• Title/Summary/Keyword: fourier

Search Result 4,993, Processing Time 0.027 seconds

FOURIER SERIES OF A DEVIL'S STAIRCASE

  • Kwon, DoYong
    • Honam Mathematical Journal
    • /
    • v.43 no.2
    • /
    • pp.259-267
    • /
    • 2021
  • Given 𝛽 > 1, we consider real numbers whose 𝛽-expansions are Sturmian words. When the slope of Sturmian words varies, their behaviors have been well studied from analytical point of view. The regularity enables us to find the Fourier series expansion, while the singularity at rational slopes yields a new kind of trigonometric series representing 𝜋.

CONDITIONAL FOURIER-FEYNMAN TRANSFORM AND CONDITIONAL CONVOLUTION PRODUCT ASSOCIATED WITH INFINITE DIMENSIONAL CONDITIONING FUNCTION

  • Jae Gil Choi;Sang Kil Shim
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.5
    • /
    • pp.1221-1235
    • /
    • 2023
  • In this paper, we use an infinite dimensional conditioning function to define a conditional Fourier-Feynman transform (CFFT) and a conditional convolution product (CCP) on the Wiener space. We establish the existences of the CFFT and the CCP for bounded functions which form a Banach algebra. We then provide fundamental relationships between the CFFTs and the CCPs.

CONDITIONAL FOURIER-FEYNMAN TRANSFORM AND CONDITIONAL CONVOLUTION PRODUCT ASSOCIATED WITH VECTOR-VALUED CONDITIONING FUNCTION

  • Ae Young Ko;Jae Gil Choi
    • The Pure and Applied Mathematics
    • /
    • v.30 no.2
    • /
    • pp.155-167
    • /
    • 2023
  • In this paper, we use a vector-valued conditioning function to define a conditional Fourier-Feynman transform (CFFT) and a conditional convolution product (CCP) on the Wiener space. We establish the existences of the CFFT and the CCP for bounded functionals which form a Banach algebra. We then provide fundamental relationships between the CFFTs and the CCPs.

Generalized Fourier-Feynman Transform of Bounded Cylinder Functions on the Function Space Ca,b[0, T]

  • Jae Gil Choi
    • Kyungpook Mathematical Journal
    • /
    • v.64 no.2
    • /
    • pp.219-233
    • /
    • 2024
  • In this paper, we study the generalized Fourier-Feynman transform (GFFT) for functions on the general Wiener space Ca,b[0, T]. We establish an explicit evaluation formula for the analytic GFFT of bounded cylinder functions on Ca,b[0, T]. We start by examining certain cylinder functions which belong in a Banach algebra of bounded functions on Ca,b[0, T]. We then obtain an explicit formula for the analytic GFFT of the bounded cylinder functions.

Sub-sampling Technique to Improve the Measurement Speed of White Light Scanning Interferometry (백색광 주사 간섭계의 측정 속도 개선을 위한 서브 샘플링 기법 연구)

  • Chyun, In-Bum;Joo, Ki-Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.11
    • /
    • pp.999-1006
    • /
    • 2014
  • In this investigation, we explain the sub-sampling technique of white light scanning interferometry (WLSI) to improve the measurement speed. In addition to the previous work using Fourier domain analysis, several methods to extract the height from the correlogram of WLSI are described with the sub-sampling technique. Especially, Fourier-inverse Fourier transformation method adopting sub-sampling technique is proposed and the phase compensation technique is verified with simulation and experiments. The main advantage of sub-sampling is to speed up the measurements of WLSI but the precision such as repeatability is slightly poor. In case of measuring the sample which has high height step or difference, the proposed technique can be widely used to reduce the measurement time.

A New NDT Technique on Tunnel Concrete Lining (터널 콘크리트 라이닝의 새로운 비파괴 검사기법)

  • 이인모;전일수;조계춘;이주공
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.249-256
    • /
    • 2003
  • To investigate the safety and stability of the concrete lining, numerous studies have been conducted over the years and several methods have been developed. Most signal processing method of NDT techniques has based on the Fourier analysis. However, the application of Fourier analysis to analyze recorded signal shows results only in frequency domain, it is not enough to analyze transient waves precisely. In this study, a new NDT technique .using the wavelet theory was employed for the analysis of non-stationary wave propagation induced by mechanical impact in the concrete lining. The wavelet transform of transient signals provides a method for mapping the frequency spectrum as a function of time. To verify the availability of wavelet transform as a time- frequency analysis tool, model experiments have been conducted on the concrete lining model. From this study, it was found that the contour map by Wavelet transform provides more distinct results than the power spectrum by Fourier transform and it was concluded that Wavelet transform was an effective tool for the experimental analysis of dispersive waves in concrete structures.

  • PDF

Fourier Series Approximation for the Generalized Baumgartner Statistic

  • Ha, Hyung-Tae
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.3
    • /
    • pp.451-457
    • /
    • 2012
  • Baumgartner et al. (1998) proposed a novel statistical test for the null hypothesis that two independently drawn samples of data originate from the same population, and Murakami (2006) generalized the test statistic for more than two samples. Whereas the expressions of the exact density and distribution functions of the generalized Baumgartner statistic are not yet found, the characteristic function of its limiting distribution has been obtained. Due to the development of computational power, the Fourier series approximation can be readily utilized to accurately and efficiently approximate its density function based on its Laplace transform. Numerical examples show that the Fourier series method provides an accurate approximation for statistical quantities of the generalized Baumgartner statistic.

On (H, μn) Summability of Fourier Series

  • CHANDRA, SATISH
    • Kyungpook Mathematical Journal
    • /
    • v.43 no.4
    • /
    • pp.513-518
    • /
    • 2003
  • In this paper, we have proved a theorem on Hausdorff summability of Fourier series which generalizes various known results. We prove that if $${\int}_{o}^{t}\;{\mid}{\phi}(u){\mid}\;du=o(t)\;as\;t{\rightarrow}0\; and\;\lim_{n{\rightarrow}{\infty}}{\int}^{\eta}_{{\pi}/n}{\frac{{\mid}{\phi}(t)-{\phi}(t+{\pi}/n){\mid}}{t}}dt=o(n)$$ where 0 < ${\eta}$ < 1, then the Fourier series is (H, ${\mu}_n$) summable to s at t = x where the sequence ${\mu}_n$ is given by ${\mu}_n={\int}^1_0x^n{\chi}(x)\;dx\;n=0,1,2\;and\;K_n(t)=\limits\sum_{{\nu}=0}^n(\array {n\\{\nu}})({\Delta}^{{n}-{\nu}}{\mu}_{\nu}){\frac{sin{\nu}t}{t}}$.

  • PDF

YEH CONVOLUTION OF WHITE NOISE FUNCTIONALS

  • Ji, Un Cig;Kim, Young Yi;Park, Yoon Jung
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.5_6
    • /
    • pp.825-834
    • /
    • 2013
  • In this paper, we study the Yeh convolution of white noise functionals. We first introduce the notion of Yeh convolution of test white noise functionals and prove a dual property of the Yeh convolution. By applying the dual object of the Yeh convolution, we study the Yeh convolution of generalized white noise functionals, which is a non-trivial extension. Finally, we study relations between the Yeh convolution and Fourier-Gauss, Fourier-Mehler transform.

FOURIER SERIES OF A STOCHASTIC PROCESS $X(t,\omega) \in L^2_{s.a.p.}$

  • Choo, Jong-Mi
    • Bulletin of the Korean Mathematical Society
    • /
    • v.21 no.2
    • /
    • pp.127-135
    • /
    • 1984
  • In this paper, we find the Fourier series of X(t, .omega.).mem. $L^{2}$$_{s.a.p.}$ and the Parseval relation of X(t, .omega.).mem. $L^{2}$$_{s.a.p.}$. In section 2, we investigate some basic properties of X(t, .omega.).mem. $L^{2}$$_{s.a.p.}$ In section 3, we show that the mean of X(t, .omega.).mem. $L^{2}$$_{s.a.p.}$ exists and in section 4, after showing the existence of Fourier exponents and Fourier coefficients of X(t, .omega.).mem. $L^{2}$$_{s.a.p.}$. we give the Parseval relation of X(t, .omega.).mem. $L^{2}$$_{s.a.p.}$. For convenience we will denote X(t, .omega.) as X(t) in what follows.hat follows.

  • PDF