• Title/Summary/Keyword: four-dimensional response surface

Search Result 46, Processing Time 0.031 seconds

Optimization for the Preparation Conditions of Instant Rice Gruel Using Oyster Mushroom and Brown Rice (느타리버섯과 현미를 이용한 즉석죽 제조조건의 최적화)

  • Lee, Gee-Dong;Kim, Hyun-Gu;Kim, Jin-Gu;Kwon, Joong-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.4
    • /
    • pp.737-744
    • /
    • 1997
  • Four-dimensional response surface methodology was used for optimizing preparation conditions and monitoring sensory quality of instant rice gruel prepared using oyster mushroom and brown rice. Water absorption time of brown rice and glutinous rice to prepare instant rice gruel were 50 hr at $5^{\circ}C\;and\;1\;hr\;at\;20^{\circ}C$, respectively. The optimum conditions predicted for each corresponding sensory properties of instant rice gruel were 47.58% (rate of brown rice in water-absorbed brown and glutinous rice), 569.68 mL (content of solution) and 52.40 min (heating time at $120^{\circ}C$) in viscosity of instant rice gruel, 47.15%, 568.49 mL and 53.04 min in taste of instant rice gruel, 44.06%, 558.54 mL and 53.84 min in mouth-feel of instant rice gruel, and 46.20%, 561.64 mL and 51.60 min in overall acceptance of instant rice gruel, respectively. The optimum conditions, which satisfy all sensory properties of rice gruel, were 44%, 620 mL and 56 min in rate of brown rice in water-absorbed brown and glutinous rice, content of solution and heating time, respectively. Sensory scores predicted at the optimum conditions were in good agreement with experimental sensory scores.

  • PDF

Changes in Organoleptic and Rheological Properties of Chinese Cabbage with Salting Condition (배추의 절임조건에 따른 관능적 특성 및 물성 변화)

  • Lee, Myung-Hee;Lee, Gee-Dong;Son, Kwang-Jin;Yoon, Sung-Ran;Kim, Jeong-Sook;Kwon, Joong-Ho
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.31 no.3
    • /
    • pp.417-422
    • /
    • 2002
  • Salting conditions on organoleptic properties and rheology of Chinese cabbage were optimized and monitored by four-dimensional response surface methodology. Experimental conditions were decided in the ranges of salt concentration 8∼12%, salting time 5∼25 hr and salting temperature 5∼15$^{\circ}C$. The salted Chinese cabbage with experiment design was measured on organoleptic and physical properties. The organoleptic form of the salted Chinese cabbage showed maximum score in 11.28% of salt concentration, 9.75 hr of salting time and 12.81$^{\circ}C$ of salting temperature. The organoleptic taste was maximized in 11.19% of salt concentration, 11.38 hr of salting time and 13.58$^{\circ}C$ of salting temperature. The organoleptic mouth-feel was maximized in 11.24% of salt concentration, 11.71 hr of salting time and 13.57$^{\circ}C$ of salting temperature. The organoleptic palatability was maximized in 11.52% of salt concentration, 12.86 hr of salting time and 13.07$^{\circ}C$ of salting temperature. In rheological properties of salted Chinese cabbage, hardness and chewiness decreased with the increase of salt concentration.

Monitoring in Yield and Organoleptic Properties Depending on Granule Formation of Propolis (프로폴리스의 세립형성에 따른 수율 및 관능적 특성 모니터링)

  • Lee, Gee-Dong;Yoon, Sung-Ran
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.5
    • /
    • pp.689-694
    • /
    • 2003
  • Propolis obtained from honeybee hives has been used in oriental folk medicine as an anti-inflammatory, anti-carcinogenic, or immunomodulatory agent. To prepare granule depending on operational parameters, such as glucose content to total sugar (X$_1$, 0~100%), ethanol concentration (X$_2$, 20~100%) and sprayed ethanol solution content (X$_3$, 6~10%) using propolis, response surface methodology was applied to monitor the changes in yield, fragmentation rate by shaking and organoleptic properties. Yield showed high with decreasing sprayed ethanol solution content and fragmentation rate by shaking decreased with increasing sprayed ethanol solution content. The organoleptic color, flavor, taste, mouth-feel and overall palatability were dependent on the glucose content to total sugar, ethanol concentration and sprayed ethanol solution content. Overall palatability was maximized in glucose content to total sugar 47.94%, ethanol concentration 56.45% and sprayed ethanol solution content 8.04% .

Monitoring the Manufacturing Characteristics of Aloe Gel-State Food (알로에 겔상 식품의 제조특성 모니터링)

  • 이기동;김숙경;권도영;박상렬
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.1
    • /
    • pp.89-95
    • /
    • 2003
  • Four-dimensional response surface methodology was used for monitoring the manufacturing characteristics of aloe gel-state food. The optimum conditions predicted for each corresponding sensory properties of aloe gel-state food were 87.38 mL (content of aloe juice), 0.16 g (content of konjac) and 0.19 g (content of carrageenan) in coloror of gel-state food, 83.84 mL, 0.17 g and 0.20 g in aroma of aloe gel-state food, 83.20 mL.0.15 g and 0.27 g taste of aloe gel-state food and 98.95 mL, 0.10 g and 0.23 g in texture of aloe gel-state food. Maximum chewiness of aloe gel-state food was in 113.05 mL aloe juice, 0.27 g konjac and 0.21 g carrageenan. The optimum conditions, which satisfied all sensory properties of gel-state food, were 88.23 mL, 0.15 g and 0.49 g in content of aloe juice, content of konjac and content of carrageenan, respectively.

Efficient Designs to Develop a Design Space in Mixture Response Surface Analysis (혼합물 반응표면분석에서 디자인 스페이스 구축을 위한 효율적인 실험계획)

  • Chung, Jong Hee;Lim, Yong B.
    • Journal of Korean Society for Quality Management
    • /
    • v.48 no.2
    • /
    • pp.269-282
    • /
    • 2020
  • Purpose: The practical design for experiments with mixtures of q components is consisted in the four types of design points, vertex, center of edge, axial, and center points in a (q-1)-dimensional simplex space. We propose a sequential method for the successful construction of the design space in Quality by Design (QbD) by allowing the different number of replicates at the four types of design points in the practical design when the quadratic canonical polynomial model is assumed. Methods: To compare the mixture designs efficiency, fraction of design space (FDS) plot is used. We search for the practical mixture designs whose the minimal half-width of the tolerance interval per a standard deviation, which is denoted as d2, is less than 4.5 at 0.8 fraction of the design space. They are found by adding the different number of replicates at the four types of the design points in the practical design. Results: The practical efficient mixture designs for the number of components between three and five are listed. The sequential method to establish a design space is illustrated with the two examples based on the simulated data. Conclusion: The designs with the center of edge points replications are more efficient than those with the vertex points replication. We propose the sample size of at least 23 for three components, 28 for four components, and 33 for the five components based on the list of efficient mixture designs.

Optimization of Ethanol Extraction Conditions for Antioxidants from Zizyphus jujuba Mill. Leaves Using Response Surface Methodology (반응표면분석법을 이용한 대추잎 항산화물질의 에탄올추출조건 최적화)

  • Min, Dul-Lae;Lim, Seok-Won;Ahn, Jun-Bae;Choi, Young-Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.42 no.6
    • /
    • pp.733-738
    • /
    • 2010
  • The leaves of Zizyphus jujuba have been used for various purposes including medicine and nutrition. In this study, the conditions for the ethanol extraction of antioxidant from Zizyphus jujuba were optimized using response surface methodology (RSM). A Box-Behnken design containing 15 experimental runs with three replicates was employed to study the effects of solvent extraction conditions such as extraction temperature ($^{\circ}C$, $X_1$), extraction time (min, $X_2$), and ethanol concentration (%, $X_3$) on the extraction yield of antioxidants from Zizyphus jujuba. The yields of total polyphenols and total flavonoid, and electron donating activity (EDA) were considered as response variables. The second-order polynomial model gave a satisfactory description of the experimental results showing different patterns of extraction conditions with variation in the linear, quadratic, and interaction effects of the independent variables. Based on four-dimensional RSM, one of the optimized sets of conditions was 45% ethanol, $45^{\circ}C$, and an extraction time of 15 min. Under the optimal conditions, the predicted values were 177.64 mg/g dry basis, 35.99 mg/g dry basis, and 86.14% Vit.C equivalents for total polyphenols, total flavonoids, and EDA, respectively. The experimental values showed good agreements with the predicted values.

Monitoring on Organolepties and Rheology with Recipe of Apple Kochujang (사과고추장의 배합비에 따른 관능적 특성과 물성 모니터링)

  • 이기동;이진만;정은재;정용진
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.29 no.6
    • /
    • pp.1068-1074
    • /
    • 2000
  • 젊은 세대들이 좋아하는 우수한 품질의 사과고추장을 개발하고자 부원료로서 사과를 사용하여 사과고추장의 배합비에 따른 관능적 특성을 반응표면분석법으로 최적화하고 물리적 특성을 모니터링하였다. 실험조건은 고춧가루는 130~210 g, 메주가루는 50~80 g, 사과퓨레는125~205 g의 범위로 설정되었으며, 실험계획에 따라 제조된 사과고추장은 물리적 및 관능적 특성을 조사하기 위해 사용되었다. 사과 고추장의 색상에 대한 관능평점은 고춧가루 140.61 g, 메줏가루 83.42 g 및 사과퓨레 169.05 g에서 가장 높았으며, 향에 대한 관능평점은 고춧가루 192.32 g, 메줏가루 56.14 g 및 사과퓨레 146.72 g에서 가장 높은 7.95를 나타내었다. 맛에 대한 관능평점은 고춧가루 함량 182 g, 메줏가루 함량 78 g 및 사과과즙 함량 199 g에서 가장 높은 7.46을 나타내었으며, 전반적인 기호도에서는 고춧가루 함량 200 g, 메줏가루 함량 57 g 및 사과과즙 함량 159 g에서 가장 높은 관능평점을 나타내었다. 사과고추장의 물리적 특성으로서 견고성은 고춧가루와 메줏가루의 함량이 높을수록 증가하였다. 고추장의 부착성과 거침성은 고춧가루 함량이 증가하고 사과과즙의 함량이 낮을수록 증가하였다.

  • PDF

NUMERICAL STUDY ON SYNTHETIC-JET-BASED FLOW SUPPLYING DEVICE (합성제트 기반의 유량 공급 장치에 대한 수치적 연구)

  • Park, M.;Lee, J.;Kim, C.
    • Journal of computational fluids engineering
    • /
    • v.20 no.1
    • /
    • pp.77-83
    • /
    • 2015
  • Flow characteristics of synthetic jet based flow supplying devices have been computationally investigated for different device shapes. Jet momentum was produced by the volume change of a cavity by two piezoelectric-driven diaphragms. The devices have additional flow path compared with the original synthetic jet actuator, and these flow path changes the flow characteristics of synthetic jet actuator. Four non-dimensional parameters, which were functions of the shapes of the additional flow path, were considered as the most critical parameters in jet performance. Comparative studies were conducted to compare volume flow rate and jet velocity. Computed results were solved by 2-D incompressible Navier-Stokes solver with k-w SST turbulence model. Detailed computations revealed that the additional flow path diminishes suction strength of the synthetic jet actuator. In addition, the cross section area of the flow path has more influence over the jet performances than the length of the flow path. Based on the computational results, the synthetic jet based flow supplying devices could be improved by applying suitable shape of the flow path.

Monitoring on Extraction Yields and Functional Properties of Brassica oleracea var. capita Extracts

  • Kim, Hyun-Ku;Lee, Gee-Dong;Kwon, Joong-Ho;Kim, Kong-Hwan
    • Food Science and Biotechnology
    • /
    • v.14 no.6
    • /
    • pp.836-840
    • /
    • 2005
  • Extraction characteristics of Bonus species of Brassica oleracea var. capita and functional properties of corresponding extract were monitored by response surface methodology (RSM). Maximum extraction yield of 44.07% was obtained at ratio of solvent to sample of 27.94 mL/g, ethanol concentration of 24.35%, and extraction temperature of $55.21^{\circ}C$. At ratio of solvent to sample, ethanol concentration, and extraction temperature of 21.11 mL/g, 58.53%, and $68.83^{\circ}C$, respectively, maximum electron-donating ability was 48.44%. Maximum inhibitory effect on tyrosinase was 68.94% at ratio of solvent to sample, ethanol concentration, and extraction temperature of 24.08 mL/g, 10.49%, and $78.71^{\circ}C$, respectively. Superoxide dismutase (SOD) showed maximum pseudo-activity of 24.78% at ratio of solvent to sample of 22.66 mL/g, ethanol concentration of 45.69%, and extraction temperature of $93.81^{\circ}C$. Based on superimposition of four-dimensional RSM with respect to extraction yield, electron-donating ability, and pseudo-activity of SOD, optimum ranges of extraction conditions were ratio of solvent to sample of 20-30 mL/g, ethanol concentration of 35-65%, and extraction temperature of $50-80^{\circ}C$.

Robust inverse identification of piezoelectric and dielectric effective behaviors of a bonded patch to a composite plate

  • Benjeddou, Ayech;Hamdi, Mohsen;Ghanmi, Samir
    • Smart Structures and Systems
    • /
    • v.12 no.5
    • /
    • pp.523-545
    • /
    • 2013
  • Piezoelectric and dielectric behaviors of a piezoceramic patch adhesively centered on a carbon composite plate are identified using a robust multi-objective optimization procedure. For this purpose, the patch piezoelectric stress coupling and blocked dielectric constants are automatically evaluated for a wide frequency range and for the different identifiable behaviors. Latters' symmetry conditions are coded in the design plans serving for response surface methodology-based sensitivity analysis and meta-modeling. The identified constants result from the measured and computed open-circuit frequencies deviations minimization by a genetic algorithm that uses meta-model estimated frequencies. Present investigations show that the bonded piezoceramic patch has effective three-dimensional (3D) orthotropic piezoelectric and dielectric behaviors. Besides, the sensitivity analysis indicates that four constants, from eight, dominate the 3D orthotropic behavior, and that the analyses can be reduced to the electromechanically coupled modes only; therefore, in this case, and if only the dominated parameters are optimized while the others keep their nominal values, the resulting piezoelectric and dielectric behaviors are found to be transverse-isotropic. These results can help designing piezoceramics smart composites for various applications like noise, vibration, shape, and health control.