• Title/Summary/Keyword: four-dimensional

Search Result 1,747, Processing Time 0.027 seconds

Three-Dimensional Finite Element Modeling for the Yellow Sea - Initial approach -

  • Suh, Seung-Won;M.G.G. Foreman
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 1996.10a
    • /
    • pp.14-14
    • /
    • 1996
  • In order to understand the tidal hydrodynamics of the Yellow Sea and Parts of the East China Sea, we have developed a three-dimensional, fine resolution, nonlinear, harmonic finite element model. Major four tidal constituents, M$_2$, S$_2$, K$_1$ and O$_1$ are used as forcing along the open boundary. Due to the shallowness of the region, tidal results are strongly affected by the bottom roughness coefficients, especially for the quadratic form. (omitted)

  • PDF

LERAY-SCHAUDER DEGREE THEORY APPLIED TO THE PERTURBED PARABOLIC PROBLEM

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.17 no.2
    • /
    • pp.219-231
    • /
    • 2009
  • We show the existence of at least four solutions for the perturbed parabolic equation with Dirichlet boundary condition and periodic condition when the nonlinear part cross two eigenvalues of the eigenvalue problem of the Laplace operator with boundary condition. We obtain this result by using the Leray-Schauder degree theory, the finite dimensional reduction method and the geometry of the mapping. The main point is that we restrict ourselves to the real Hilbert space instead of the complex space.

  • PDF

Curvature homogeneity for four-dimensional manifolds

  • Sekigawa, Kouei;Suga, Hiroshi;Vanhecke, Lieven
    • Journal of the Korean Mathematical Society
    • /
    • v.32 no.1
    • /
    • pp.93-101
    • /
    • 1995
  • Let (M,g) be an n-dimensional, connected Riemannian manifold with Levi Civita connection $\nabla$ and Riemannian curvature tensor R defined by $$ R_XY = [\nabla_X, \nabla_Y] - \nabla_{[X,Y]} $$ for all smooth vector fields X, Y. $\nablaR, \cdots, \nabla^kR, \cdots$ denote the successive covariant derivatives and we assume $\nabla^0R = R$.

  • PDF

Particle tracking algorithm for the Lagrangian-Eulerian finite element method

  • 석희준
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.97-100
    • /
    • 2004
  • Multivariate Newton Raphson method is developed to perform the particle tracking in the three dimensional area using four objective functions. In this method, three variables are solved to compute target point and actual and real tracking time. The simulated pathlines in various types of three dimensional elements are well matched with exact pathline.

  • PDF

SPECIAL CLASSES OF MERIDIAN SURFACES IN THE FOUR-DIMENSIONAL EUCLIDEAN SPACE

  • GANCHEV, GEORGI;MILOUSHEVA, VELICHKA
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.6
    • /
    • pp.2035-2045
    • /
    • 2015
  • Meridian surfaces in the Euclidean 4-space are two-dimensional surfaces which are one-parameter systems of meridians of a standard rotational hypersurface. On the base of our invariant theory of surfaces we study meridian surfaces with special invariants. In the present paper we give the complete classification of Chen meridian surfaces and meridian surfaces with parallel normal bundle.

Two-Dimensional Airfoil Characteristics under ground effect in Subsonic Turbulent Flow Regimes (아음속 난류 유동 영역에서 지면 효과를 갖는 2차원 에어포일의 특성)

  • Im Y. H.;Chang K. S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.61-65
    • /
    • 1997
  • A two-dimensional airfoil under ground effect in subsonic turbulent flow is calculated by sieving the Navier-Stokes equation. Some numerical results for different NACA four-digit airfoils are presented. The numerical results show that the lift and drag coefficients are strongly influenced by the shape of the region between the lower surface of airfoil and the ground In general, the airfoil with large camber and small thickness is suitable for WIG vehicles

  • PDF

MICHAEL'S SELECTION THEORIES AND THEIR APPLICATIONS

  • CHO, MYUNG HYUN
    • Honam Mathematical Journal
    • /
    • v.20 no.1
    • /
    • pp.135-145
    • /
    • 1998
  • In this paper, we focus on the convex-valued selection theorem out of four main selection theorems; zero-dimensional, convex-valued, compact-valued, finite-dimensional theorems based on Michael's papers. We prove some theorems about lower semi-continuous set-valued mappings, and derive some applications to closed continuous set-valued mappings and to functional analysis. We also give a partial solution to the open problem posed by Engelking, Heath, and Michael.

  • PDF

Process Map for Improving the Dimensional Accuracy in the Multi-Stage Drawing Process of Rectangular Bar with Various Aspect Ratio (다양한 종횡비의 직사각바 다단 인발공정에서 치수정도 향상을 위한 프로세스 맵)

  • Ko, P.S.;Kim, J.H.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.27 no.3
    • /
    • pp.154-159
    • /
    • 2018
  • In the rectangular bar multi-stage drawing process, the cross-section dimensional accuracy of the rectangular bar varies depending on the aspect ratio and process conditions. It is very important to predict the dimensional error of the cross-section occurring in the multi-stage drawing process according to the aspect ratio of the rectangular bar and the half die angle of each pass. In this study, a process map for improving the dimensional accuracy according to the aspect ratio was derived in the drawing process of a rectangular bar. FE-simulation of the multi-stage shape drawing process was carried out with four types of rectangular bar. The results of the FE-simulation were trained to the nonlinear relationship between the shape parameters using an Artificial Neural Network (ANN), and the process maps were derived from them. The optimum half die angles were determined from the process maps on the dimensional accuracy. The validity of the suggested process map for aspect ratios 1.25~2:1 were verified through FE-simulation and experimentation.

Underwater striling engine design with modified one-dimensional model

  • Li, Daijin;Qin, Kan;Luo, Kai
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.3
    • /
    • pp.526-539
    • /
    • 2015
  • Stirling engines are regarded as an efficient and promising power system for underwater devices. Currently, many researches on one-dimensional model is used to evaluate thermodynamic performance of Stirling engine, but in which there are still some aspects which cannot be modeled with proper mathematical models such as mechanical loss or auxiliary power. In this paper, a four-cylinder double-acting Stirling engine for Unmanned Underwater Vehicles (UUVs) is discussed. And a one-dimensional model incorporated with empirical equations of mechanical loss and auxiliary power obtained from experiments is derived while referring to the Stirling engine computer model of National Aeronautics and Space Administration (NASA). The P-40 Stirling engine with sufficient testing results from NASA is utilized to validate the accuracy of this one-dimensional model. It shows that the maximum error of output power of theoretical analysis results is less than 18% over testing results, and the maximum error of input power is no more than 9%. Finally, a Stirling engine for UUVs is designed with Schmidt analysis method and the modified one-dimensional model, and the results indicate this designed engine is capable of showing desired output power.

Comparison between audio-only and audiovisual biofeedback for regulating patients' respiration during four-dimensional radiotherapy

  • Yu, Jesang;Choi, Ji Hoon;Ma, Sun Young;Jeung, Tae Sig;Lim, Sangwook
    • Radiation Oncology Journal
    • /
    • v.33 no.3
    • /
    • pp.250-255
    • /
    • 2015
  • Purpose: To compare audio-only biofeedback to conventional audiovisual biofeedback for regulating patients' respiration during four-dimensional radiotherapy, limiting damage to healthy surrounding tissues caused by organ movement. Materials and Methods: Six healthy volunteers were assisted by audiovisual or audio-only biofeedback systems to regulate their respirations. Volunteers breathed through a mask developed for this study by following computer-generated guiding curves displayed on a screen, combined with instructional sounds. They then performed breathing following instructional sounds only. The guiding signals and the volunteers' respiratory signals were logged at 20 samples per second. Results: The standard deviations between the guiding and respiratory curves for the audiovisual and audio-only biofeedback systems were 21.55% and 23.19%, respectively; the average correlation coefficients were 0.9778 and 0.9756, respectively. The regularities between audiovisual and audio-only biofeedback for six volunteers' respirations were same statistically from the paired t-test. Conclusion: The difference between the audiovisual and audio-only biofeedback methods was not significant. Audio-only biofeedback has many advantages, as patients do not require a mask and can quickly adapt to this method in the clinic.