• Title/Summary/Keyword: four quadrant DC converter

Search Result 4, Processing Time 0.018 seconds

Improvement of the amplification gain for a propulsion drives of an electric vehicle with sensor voltage and mechanical speed control

  • Negadi, Karim;Boudiaf, Mohamed;Araria, Rabah;Hadji, Lazreg
    • Smart Structures and Systems
    • /
    • v.29 no.5
    • /
    • pp.661-675
    • /
    • 2022
  • In this paper, an electric vehicle drives with efficient control and low cost hardware using four quadrant DC converter with Permanent Magnet Direct Current (PMDC) motor fed by DC boost converter is presented. The main idea of this work is to improve the energy efficiency of the conversion chain of an electric vehicle by inserting a boost converter between the battery and the four quadrant-DC motor chopper assembly. Consequently, this method makes it possible to maintain the amplification gain of the 4 quadrant chopper constant regardless of the battery voltage drop and even in the presence of a fault in the battery. One of the most important control problems is control under heavy uncertainty conditions. The higher order sliding mode control technique is introduced for the adjustment of DC bus voltage and mechanical motor speed. To implement the proposed approach in the automotive field, experimental tests were carried out. The performances obtained show the usefulness of this system for a better energy management of an electric vehicle and an ideal control under different operating conditions and constraints, mostly at nominal operation, in the presence of a load torque, when reversing the direction of rotation of the motor speed and even in case of battery chamber failure. The whole system has been tested experimentally and its performance has been analyzed.

THE DYNAMICAL PERFORMANCE OF CONTROLLED FLYWHEELING DUAL CONVERTER-FED DC MOTOR DRIVES WITH SIMULATANEOUS CONTROL AND FUZZY PI CONTROLLER

  • Soltani, Jafar;Sojdei, Jamshid
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.414-419
    • /
    • 1998
  • This paper describes the dynamical performance of a four-quadrant circulation current mode control of dc motor drive, using the controlled flywleeling technique, a four-quadrant closed-loop control drive with an inner current control loop and a speed fuzzy PI regulator is designed. The obtained computer simulation results of a dc motor drive below and above the base speed are demonstrated. These result show that compare to a conventional dual-converter-fed dc motor drive with simultaneous control, the overal system performance has been improved and also, agood stability and robstness has been achieved.

  • PDF

Predictive Current Control of Four-Quadrant Converters Based on Specific Sampling Method and Modified Z-Transform

  • Zhang, Gang;Qian, Jianglin;Liu, Zhigang;Tian, Zhongbei
    • Journal of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.179-189
    • /
    • 2019
  • Four-quadrant converters (4QCs) are widely used as AC-DC power conversion interfaces in many areas. A control delay commonly exists in the digital implementation process of 4QCs, especially for high power 4QCs with a low switching frequency. This usually results in alternating current distortion, increased current harmonic content and system instability. In this paper, the control delay is divided into a computation delay and a PWM delay. The impact of the control delay on the performance of a 4QC is briefly analyzed. To obtain a fundamental value of AC current that is as accurately as possible, a specific sampling method considering the PWM pattern is introduced. Then a current predictive control based on a modified z-transform is proposed, which is effective in reducing the control delay and easy in terms of digital implementation. In addition, it does not depend on object models and parameters. The feasibility and effectiveness of the proposed predictive current control method is verified by simulation and experimental results.

Transformerless Cascaded AC-DC-AC Converter for Multiphase Propulsion Drive Application

  • Tao, Xing-Hua;Xu, Lie;Song, Yi-Chao;Sun, Min
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.3
    • /
    • pp.354-359
    • /
    • 2012
  • A transformerless converter suitable for multiphase drive application is presented in this paper. The topology employs a cascaded H-bridge rectifier as the interface between the grid and multi inverters which drive the multiphase motor. Compared with the conventional structure, the new topology eliminates the input transformer and also has the advantages such as four quadrant operation, simple configuration, low cost, high efficiency, and so on. The control strategies for the grid-side cascade H-bridge rectifier and the motor-side inverter are studied accordingly. Based on the multi-rotational reference frame, modular control scheme is developed to regulate the multiphase drive system. Simulation results show the proper operation of the proposed topology and the corresponding control strategy.