• Title/Summary/Keyword: foundation height

Search Result 214, Processing Time 0.03 seconds

Gait Stability in K-pop Professional Dancers

  • Jang, Young Kwan;Hong, Su Yeon;Jang, Inyoung
    • Korean Journal of Applied Biomechanics
    • /
    • v.26 no.4
    • /
    • pp.377-382
    • /
    • 2016
  • Objective: The purpose of this study was to provide data on gait characteristics of K-pop professional dancers. Method: Participants were divided into four groups: male dancers (n=10, age: $28.2{\pm}3.4years$, height: $175{\pm}6cm$, weight: $68.9{\pm}5.6kg$), female dancers (n=10, age: $26.7{\pm}3.1years$, height: $162{\pm}4cm$, weight: $52.1{\pm}3.7kg$), non-dancer males (n=10, age: $25.2{\pm}2.6years$, height: $171{\pm}6cm$, weight: $66.4{\pm}5.3kg$), or non-dancer females (n=10, age: $26.2{\pm}3.0years$, height: $161{\pm}5cm$, weight: $56.4{\pm}6.7kg$). Twelve infrared cameras (Qualisys, Oqus 500, Sweden, 150 Hz.) were used to capture three-dimensional motion data. Gait motion data of professional dancers and ordinary persons were obtained. Results: K-pop dancers' dynamic stability during the female toe off event and the male heel contact event was better compared with that of ordinary persons in the front-rear direction. In addition, the results showed a significant difference in the margin of stability (MoS). However, the medial-lateral direction of both female and male dancers during heel contact and the toe off event was more stable compared with ordinary person, who exhibited an increased MoS than did the dancers. Conclusion: This study aimed to investigate the gait characteristics of K-pop professional dancers in comparison with ordinary persons using gait parameters and MoS. The stability of K-pop professional dancers' dynamic gait in the front-rear direction was better than that in the medial-lateral direction. Therefore, further studies in which the dance movements of K-pop dancers are sub-divided and analyzed will be necessary to reduce related injury.

Study on Seismic Response of Wall-Slab Apartment Building Sturucture Considering the Stiffnesses of a Foundation-Soil System (기초지반강성을 고려한 벽식구조 아파트의 지진응답에 관한 연구)

  • 김지원
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.167-175
    • /
    • 2000
  • Seismic analyses of structures can`t be performed without considering the effect of soil-structure interaction and seismic responses of a structure taking into account the stiffnesses of a foundation-soil system show a significant difference from those with a rigid base. However, current seismic analyses of apartment building structures were carried out assuming a rigid base and ignoring the characteristics of a foundation and the properties of the underlying soil. In this study, seismic analyses of apartment buildings of a particular wall-slab structural type were carried out comparing seismic response spectra of a flexible base with those of a rigid base and UBC-97. Wall-slab type low-rise or mid-height apartment buildings built on the deep soil layer showed a rigid body motion with the reduced seismic responses due to the base isolation effect, indicating that it is too safe but uneconomical to utilize the design spectra of UBC-97 for the seismic analysis of a wall-slab type apartment buildings due to the too conservative design.

  • PDF

Stability Analysis of Marine Structure Foundation Constructed by Deep Mortar Piles (심층몰탈파일로 조성된 항만구조물 기초의 안정성 검토)

  • 천병식;여유현;김경민;양진석;김도식
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.228-233
    • /
    • 2001
  • In this case study, under conideration of field situations, such as increase of water level, height increment of the marine structure, dredging and backfill, the stability analysis of sliding and lateral flow of the marine structure in OOOharbor was carried out, and foundation reinforcement methods was presented. based on the results of site investigation, the stability analysis of slope sliding and lateral flow was performed as following. In section BH-1, 2, the analysis was performed in two cases that the marine structure was heightened and filled, and not heightened and filled. In section BH-1, 4, heightened and filled. The analysis results showed that the stabilities of slope sliding and lateral flow in section BH-1, 2, 3, 4 were unstable. After additional reinforcements with Deep Mortar Pile, the stabilities in section BH-1, 2, 3, 4 were evaluated as efficiently large.

  • PDF

Numerical study of internally reinforced circular CFT column-to-foundation connection according to design variables

  • Kim, Hee-Ju;Ham, Junsu;Park, Ki-Tae;Hwang, Won-Sup
    • Steel and Composite Structures
    • /
    • v.23 no.4
    • /
    • pp.445-452
    • /
    • 2017
  • This study intends to improve the structural details of the anchors in the conventional CFT column-to-foundation connection. To that goal, finite element analysis is conducted with various design variables (number and embedded length of deformed bars, number, aspect ratio, height ratio and thickness ratio of ribs) selected based upon the results of loading test and strength evaluation. The finite element analysis is performed using ABAQUS and the analytical results are validated by comparison with the load-displacement curves obtained through loading test applying axial and transverse loads. The behavioral characteristics of the numerical model according to the selected design variables are verified and the corresponding results are evaluated.

OPTIMAL DESIGN ALGORITHM OF THE FOUNDATION OF TOWER CRANES

  • Kim, Sun-Kuk;Kim, Jang-Young;Ryu, Sang-Yeon
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.1047-1052
    • /
    • 2009
  • As buildings nowadays become taller in height and larger in size the safety review of lifting plan takes larger portion in construction project management. However, the cost and safety in lifting plan have a contradictory effect on each other. Therefore, an optimization algorithm needs devising as a solution of the contradictory problem. In many cases at construction sites, selections and stability review of tower cranes are assigned to equipment suppliers or field managers, which cause the problems in safety and cost of the projects. To improve the part of the current situation, a study on the optimization algorithm for designing the foundation of tower cranes is conducted in this study, which can be utilized by equipment suppliers or field managers to check the stability of tower cranes easily and promptly without substantial knowledge.

  • PDF

Experimental evaluation of back-to-back anchored walls by double-plates anchors

  • Amir, Najafizadeh;AmirAli, Zad
    • Geomechanics and Engineering
    • /
    • v.31 no.6
    • /
    • pp.599-614
    • /
    • 2022
  • One of the methods of stabilizing retaining walls, embankments, and deep excavations is the implementation of plate anchors (like the Geolock wall anchor systems). Back-to-back Mechanically Stabilized Earth (BBMSE) walls are common stabilized earth structures that can be used for bridge ramps. But so far, the analysis of the interactive behavior of two back-to-back anchored walls (BBAW) by double-plates anchors (constructed closely from each other and subjected to the limited-breadth vertical loading) including interference of their failure and sliding surfaces has not been the subject of comprehensive studies. Indeed, in this compound system, the interaction of sliding wedges of these two back-to-back walls considering the shear failure wedge of the foundation, significantly impresses on the foundation bearing capacity, adjacent walls displacements and deformations, and their stability. In this study, the effect of horizontal distance between two walls (W), breadth of loading plate (B), and position of vertical loading was investigated experimentally. In addition, the comparison of using single and equivalent double-plate anchors was evaluated. The loading plate bearing capacity and displacements, and deformations of BBAW were measured and the results are presented. To evaluate the shape, form, and how the critical failure surfaces of the soil behind the walls and beneath the foundation intersect with one another, the Particle Image Velocimetry (PIV) technique was applied. The experimental tests results showed that in this composite system (two adjacent-loaded BBAW) the effective distance of walls is about W = 2.5*H (H: height of walls) and the foundation effective breadth is about B = H, concerning foundation bearing capacity, walls horizontal displacements and their deformations. For more amounts of W and B, the foundation and walls can be designed and analyzed individually. Besides, in this compound system, the foundation bearing capacity is an exponential function of the System Geometry Variable (SGV) whereas walls displacements are a quadratic function of it. Finally, as an important achievement, doubling the plates of anchors can facilitate using concrete walls, which have limitations in tolerating curvature.

Nonlinear response of the pile group foundation for lateral loads using pushover analysis

  • Zhang, Yongliang;Chen, Xingchong;Zhang, Xiyin;Ding, Mingbo;Wang, Yi;Liu, Zhengnan
    • Earthquakes and Structures
    • /
    • v.19 no.4
    • /
    • pp.273-286
    • /
    • 2020
  • The pile group foundation is widely used for gravity pier of high-speed railway bridges in China. If a moderate or strong earthquake occurs, the pile-surrounding soil will exhibit obvious nonlinearity and significant pile group effect. In this study, an improved pushover analysis model for the pile group foundation with consideration of pile group effect is presented and validated by the quasi-static test. The improved model uses simplified springs to simulate the soil lateral resistance, side friction and tip resistance. PM (axial load-bending moment) plastic hinge model is introduced to simulate the impact of the axial force changing of pile group on their elastic-plastic characteristics. The pile group effect is considered in stress-stain relations of the lateral soil resistance with a reduction factor. The influence factors on nonlinear characteristics and plastic hinge distribution of the pile group foundation are discussed, including the pier height, longitudinal reinforcement ratio and stirrup ratio of the pile, and soil mechanical parameters. Furthermore, the displacement ductility factor, resistance increase factor and yielding stiffness ratio are provided to evaluate the seismic performance of soil-pile system. A case study for the pile group foundation of a railway simply supported beam bridge with a 32 m-span is conducted by numerical analysis. It is shown that the ultimate lateral force of pile group is not determined by the yielding force of the single one in these piles. Therefore, the pile group effect is essential for the seismic performance evaluation of the railway bridge with pile group foundation.

A Study on Improved Inspection Method of the Foundation Scouring and Establishment of 3D Underwater Surface Map (개선된 교량 기초세굴 점검방법 및 3D 하상지도 구축 연구)

  • Choi, Hyun-Chul;Ko, Jun-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.5
    • /
    • pp.161-170
    • /
    • 2022
  • The maintenance of bridges installed in rivers is carried out through facility safety inspection and repair & reinforcement procedures according to the results. Many studies have been so far conducted on the safety check of the bridge upperstructure because of the ease of access. However as it is impossible to directly investigate whether the pier foundation installed in the river has been scoured. Management of underwater foundations has remained based on theory. In this study, the scour of the bridge foundation installed in such a river was realized in 3D form by using an echo sounder and VRS. This made it possible to predict the scour pattern through comparison and analysis with the ground height of the riverbed at the time of the bridge installation. Based on these results, if the pier foundation is used as an initial data to determine whether or not local scour is present and to predict long-term scouring, bridge collapse due to foundation scour can be prevented.

Physical modelling of sliding failure of concrete gravity dam under overloading condition

  • Zhu, Hong-Hu;Yin, Jian-Hua;Dong, Jian-Hua;Zhang, Lin
    • Geomechanics and Engineering
    • /
    • v.2 no.2
    • /
    • pp.89-106
    • /
    • 2010
  • Sliding within the dam foundation is one of the key failure modes of a gravity dam. A two-dimensional (2-D) physical model test has been conducted to study the sliding failure of a concrete gravity dam under overloading conditions. This model dam was instrumented with strain rosettes, linear variable displacement transformers (LVDTs), and embedded fiber Bragg grating (FBG) sensing bars. The surface and internal displacements of the dam structure and the strain distributions on the dam body were measured with high accuracy. The setup of the model with instrumentation is described and the monitoring data are presented and analyzed in this paper. The deformation process and failure mechanism of dam sliding within the rock foundation are investigated based on the test results. It is found that the horizontal displacements at the toe and heel indicate the dam stability condition. During overloading, the cracking zone in the foundation can be simplified as a triangle with gradually increased height and vertex angle.

Parametric Study on Scouring around Suction Bucket Foundation (파라미터 변화에 따른 석션버켓기초에 발생하는 세굴현상에 대한 수치해석 연구)

  • Park, Sunho;Song, Seongjin;Wang, Haiqing;Joung, Taehwan;Shin, Yunsup
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.4
    • /
    • pp.281-287
    • /
    • 2017
  • In the case of fixed offshore wind turbines, scouring phenomena have been reported around sub-structures as a result of currents, which seriously damage the structural stability. A parametric study of the various sub-structures of a fixed offshore wind turbine was performed to investigate their effects on the scouring phenomena. For a suction bucket foundation and monopile, the effects of the stick-up heights and water depth were studied, respectively. The open source libraries, called OpenFOAM, were used to simulate a violent flow around a foundation. The numerical methods were selected based on a two-dimensional analysis of a suction bucket. Based on the results for various stick-up heights, a larger scouring region was observed with an increase in the stick-up height because of the down-wash flow around a foundation. Based on the results for various monopile water depths, the water depth had an insignificant effect on the scouring.