• Title/Summary/Keyword: foundation displacement

Search Result 450, Processing Time 0.027 seconds

Analysis of the Shaft Resistance of a Pile Embedded in Sand Responding to Ground Deformation by Model Tests of Simulated Ground Heaving (실내모형실험을 통한 지반 융기시 사질토 지반에 매설된 지반 변형 대응형 말뚝의 주면 마찰 저항 분석)

  • Shin, Sehee;Lee, Kicheol
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.1
    • /
    • pp.5-14
    • /
    • 2023
  • The pile driving process may lead to ground heaving, causing additional positive skin friction to act on the piles, compromising their stability. This study proposes a new pile foundation type that can reduce positive skin friction. This was investigated by designing and constructing a pile with a hydraulic cylinder which actively responds to ground deformation. The newly proposed pile design was compared against traditional piles in multiple model tests where ground heaving was simulated. In the tests, base load and total shaft resistance were measured during ground heaving and with expansion of the hydraulic cylinder. As a result of the tests, a very small amount of expansion of the hydraulic cylinder member completely reduced the positive skin friction and increased the base load. Excessive expansion of the hydraulic cylinder, however, generates negative skin friction beyond the zero skin friction state. Therefore, it is necessary to estimate the appropriate level of hydraulic cylinder expansion, taking into account the amount of ground heaving and the allowable displacement of the pile.

Hysteretic Damage Model for Reinforced Concrete Joints Considering Bond-Slip (부착-슬립을 고려한 철근콘크리트 접합부의 이력 손상 모델 개발)

  • Kim, Do-Yeon;Choi, In-Kil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4A
    • /
    • pp.517-528
    • /
    • 2008
  • This paper presents a hysteretic damage model for reinforced concrete (RC) joints that explicitly accounts for the bond-slip between the reinforcing bars and the surrounding concrete. A frame element whose displacement fields for the concrete and the reinforcing bars are different to permit slip is developed. From the fiber section concept, compatibility equations for concrete, rebar, and bond are defined. Modification of the hysteretic stress-strain curve of steel is conducted for partial unloading and reloading conditions. Local bond stress-slip relations for monotonic loads are updated at each slip reversal according to the damage factor. The numerical applications of the reinforcing bar embedded in the confined concrete block, the RC column anchored in the foundation, and the RC beam-column subassemblage validate the model accuracy and show how including the effects of bond-slip leads to a good assessment of the amount of energy dissipation during loading histories.

Treatment of Distal Tibial Spiral Fractures Combined with Posterior Malleolar Fractures (후과 골절이 동반된 경골 원위부 나선상 골절의 치료)

  • Kim, Young Sung;Lee, Ho Min;Kim, Jong Pil;Chung, Phil Hyun;Park, Soon Young
    • Journal of the Korean Orthopaedic Association
    • /
    • v.56 no.4
    • /
    • pp.317-325
    • /
    • 2021
  • Purpose: This study compared the functional and radiologic outcomes of intramedullary nailing (IMN) and minimally invasive plate osteosynthesis (MIPO) for tibia fractures in distal tibial spiral fractures combined with posterior malleolar fractures, as well as the functional and radiologic outcomes with and without fixation for posterior malleolar fractures. Materials and Methods: From January 2010 to December 2018 the radiological and clinical outcomes of 30 skeletally mature patients with tibial spiral fractures (AO Foundation/Orthopaedic Trauma Association classification 42-A1, B1, C1) combined with posterior malleolar fractures were analyzed. Sixteen patients were treated with IMN, and 14 patients were treated with MIPO. Depending on the surgical methods, the radiologic and clinical outcomes were compared by evaluating the bone union time, postoperative alignment, postoperative displacement of the posterior malleolar fragment, and American Orthopaedic Foot and Ankle Society (AOFAS) score. Moreover, the functional and clinical outcomes with and without fixation for posterior malleolar fractures were compared. Results: The mean bone union time was 21.8 weeks in the IMN group and 23.1 weeks in the MIPO group (p=0.500). At the final follow up, the mean alignment was coronal angulation of 1.8°, sagittal angulation of 1.6° in the IMN group and coronal angulation of 1.2° and sagittal angulation of 1.7° in the MIPO group (conoral angulation: p=0.131, sagittal angulation: p=0.850). The postoperative and final radiologic evaluation showed no displacement of the posterior malleolar fragment and excellent joint congruity in all cases. At the final follow-up, the mean AOFAS score was 88.0 on average in the IMN group and 87.6 on average in the MIPO group (p=0.905). The ankle range of motion and AOFAS score were similar in the fixation group and no fixation group for posterior malleolar fractures. Conclusion: Both IMN and MIPO for tibial spiral fractures combined with posterior malleolar fractures result in satisfactory radiological and clinical outcomes.

Evaluation of the Shear Strength and Stiffness of Frozen Soil with a Low Water Content (함수비가 낮은 동결토의 전단강도 및 강성 평가)

  • Kim, Sang Yeob;Lee, Jong-Sub;Kim, Young Seok;Byun, Yong-Hoon
    • The Journal of Engineering Geology
    • /
    • v.25 no.1
    • /
    • pp.93-102
    • /
    • 2015
  • The characteristics of frozen soils are one of most important factors for foundation design in cold region. The objective of this study is to evaluate the shear strength and stiffness of frozen soils according to the confining conditions during the freezing and shearing phase. A direct shear box is constructed for the frozen specimens and bender elements are mounted on the wall of the shear box to measure shear wave velocities. Specimens are prepared by mixing sand and silt with a silt fraction of 30% in weight and the degree of saturation of 10%, giving a relative density of 60% for all tests. The temperature of the specimens in the freezer is allowed to fall below -5℃, and then direct shear tests are performed. A series of vertical stresses are applied during the freezing and shearing phase. Shear stress, vertical displacement, and shear wave along the horizontal displacement are measured. Experimental results show that in all the tests, shear strength increases with increasing vertical stress applied during the freezing and shearing phases. The magnitude of the increase in shear strength with increasing vertical stress during shearing under fixed vertical stress in the frozen state is smaller than the magnitude of the increase in vertical stress during freezing and shearing. In addition, the change in shear wave velocities varies with the position of the bender elements. In the case of shear waves passing through the shear plane, the shear wave velocities decrease with increasing horizontal displacement. This study provides an evaluation of the properties of shear strength and stiffness of frozen soils under varied confining condition.

Digital Documentation and Short-term Monitoring on Original Rampart Wall of the Gyejoksanseong Fortress in Daejeon, Korea (대전 계족산성 원형성벽의 디지털기록화 및 단기모니터링 연구)

  • Kim, Sung Han;Lee, Chan Hee;Jo, Young Hoon
    • Economic and Environmental Geology
    • /
    • v.52 no.2
    • /
    • pp.169-188
    • /
    • 2019
  • This study was carried out unmanned aerial photography and terrestrial laser scanning to establish digital database on original wall of Gyejoksanseong fortress, and measured ground control points for continuity of the monitoring. It also performed precise examination with the naked eye, unmanned aerial photogrammetry, endoscopy, total station and handy measurement to examine the structural stability of the original walls. The ground control points were considered as a point where visual field can be secured, 3 points were selected around each of the south and north walls. For the right side of the south original wall, aerial photogrammetry was conducted using drones and a deviation analysis of 3-dimensional digital models was performed for short-term monitoring. As a result, the two original walls were almost matched in range within 5mm, and no difference indicating displacement of stones was found, except for partial deviation. Regular monitoring of the areas with structural deformation such as bulging, weak and fracture zone by precisely examining with the naked eye and using high-resolution photo data revealed no distinct change. The inner foundation observed through endoscopy found out that filling stones of the original walls were still remained, while most filling soil was lost. As a result of measuring the total station focusing around the points with structural deformation on the original walls, the maximum displacements of the north and south walls were somewhat high with 6.6mm and 3.8mm, respectively, while the final displacements were relatively stable at below 2.9mm and 1.4mm, respectively. Handy measurement also did not reveal clear structural deformation with displacements below 0.82mm at all points. Even though the results of displacement monitoring on the original walls are stable, it is hard to secure structural stability due to the characteristics of ramparts where sudden brittle fracture occurs. Therefore, it is necessary to conduct conservational scientific diagnosis, precise monitoring, and structural analysis based on the 3-dimensional figuration information obtained in this research.

Examination of Applicability of Liquefaction Potential Index to Seismic Vulnerability Evaluation of the Korean River Levees (액상화 가능 지수의 국내 하천제방 지진취약도 평가 적용성 검토)

  • Ha, Iksoo;Moon, Injong;Yun, Jungwon;Han, Jintae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.4
    • /
    • pp.31-40
    • /
    • 2017
  • In this study, a simple method to evaluate the seismic vulnerability of river levees was examined considering the structural characteristic of river levee, that is long, and the functional characteristic of river levee that performs temporary function against flood but is a permanent structure in the ordinary way. Considering the fact that one of the main failure modes of the levee during the earthquake are the settlement due to the strength reduction of the ground caused by the increase of the excess pore pressure in the levee body and foundation and the settlement due to liquefaction, the 2-dimensional section of the levee was regarded as the 1-dimensional section and the liquefaction potential index (LPI) for the regarded section was estimated. The estimated LPI was correlated with the seismic vulnerability of river levees. The relationship between the displacement of the levee crest caused by the earthquake and the seismic vulnerability of the levees was obtained from the results of previous researches and the correlation between the displacements of the levee crest computed by 2-dimensional dynamic coupled analyses and LPIs based on the results of 1-dimensional seismic response analyses was investigated. In connection with this correlation, as a result of examination of the correlation between LPI and the seismic vulnerability of the levee, it was concluded that the method for evaluation of the seismic vulnerability of the Korean river levee using LPI is applicable.

An Application of Construction Sequence Analysis for Checking Structural Stability of High-Rise Building under Construction (초고층 건물의 시공 중 구조적 안정성 검토를 위한 시공단계해석의 적용)

  • Eom, Tae-Sung;Kim, Jae-Yo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.3
    • /
    • pp.211-221
    • /
    • 2009
  • With recent trends of super-tallness, atypical plan shapes and zoning constructions in high-rise buildings, a structural stability of the building under construction is arising as a key issue for design and construction plan. To ensure the structural stability under construction, the differential column shortening of vertical members, the lateral displacement of tower frames, and differential settlement of raft foundation by unbalanced distributions of a tower self-weight before the completion of a lateral load resisting system should be checked by construction sequence analysis, which should be performed by systematic combinations with structural health monitoring, construction compensation program, and construction panning. This paper presents the scheme of zone-based construction sequence analysis by using the existing commercial analysis program, to check the stability of high-rise building under construction. This scheme is applied to 3-dimensional structural analysis for a real high-rise building under construction. The analysis includes real construction zoning plans and schedules as well as creep and shrinkage effects and time-dependent properties of concrete. The simplified construction sequence and assumed material properties were continuously updated with the change on construction schedule and correlations with in-situ measurement data.

A Comparative Study of Structural Analysis on DCM Improved by Pile and Block Type (말뚝식과 블록식이 혼합된 시멘트혼합처리공법(DCM)의 구조체 해석 비교 연구)

  • Shin, Hyun Young;Kim, Byung Il;Kim, Kyoung O;Han, Sang Jae
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.4
    • /
    • pp.5-19
    • /
    • 2014
  • In this study, the structural analysis is performed on the method of shallow block and deep cement mixing pile, and then their characteristics and associated behaviors were analyzed. In the case of continuous beam analysis, the predicted settlement was very small, and shear force and bending stress are somewhat overestimated. The frame method is similar to numerical analysis in the internal force shallow block and long pile, but because the settlement of pile is underestimated, the additional calculation using the reaction of the long pile is necessary. For soil arching method and piled raft foundation method, the excessive axial force of long pile was predicted because the load sharing of pile is very large compared to the other methods. In the behavior of the shallow block and deep pile method, the settlement of shallow block and contact pressure are much in the center than the edge. In the estimating method considering the interaction between improved material and ground, the load sharing of the soil-cement pile ranges from 20% to 45%, and the stress ratio is 2.0~5.0 less than piled DCM. The maximum member forces at the boundary conditions of pile head are similar, but in fixed head the axial force and vertical displacement are different in accordance with pile arrangement.

Effect of Module Design for a Garment-Type Heart Activity Monitoring Wearable System Based on Non-Contact Type Sensing (비접촉식 심장활동 모니터링 기능 의복형 웨어러블 시스템의 모듈 효과 탐색)

  • Koo, Hye Ran;Lee, Young-Jae;Gi, Sunok;Lee, Seung Pyo;Kim, Kyeng Nam;Kang, Seung Jin;Lee, Jeong-Whan;Lee, Joo Hyeon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.39 no.3
    • /
    • pp.369-378
    • /
    • 2015
  • Various forms of wearable bio-signal monitoring systems have been developed recently. Acquisition of stable bio-signal data for health care purposes needs to be unconscious and continuous without hindrance to the users' daily activities. The garment type is a suitable form of a wearable bio-signal monitoring system; however, motion artifacts caused by body movement degrade the signal quality during the measurement of bio-signals. It is crucial to stabilize the electrode position to reduce motion artifacts generated when in motion. The problems with motion artifacts remain unresolved despite their significant effect on bio-signal monitoring. This research creates a foundation for the design of garment-type wearable systems for everyday use by finding a method to reduce motion artifacts through modular design. Two distinct garment-type wearable systems (tee-shirt with a motion artifact-reducing module (MARM) and tee-shirt without a MARM) were designed to compare the effects of modular design on the measurement of heart activity in terms of electrode position displacement, signal quality index value, and morphological quality. The tee-shirt with MARM showed superior properties and yielded higher quality signals than the tee-shirt without MARM. In addition, the tee-shirt with MARM showed a better repeatability of the heart activity signals. Therefore, a garment design with MARM is an efficient way to acquire stable bio-signals while in motion.

Experimental Study on the Behavior of Building Hardware with Joint Details (접합 방법에 따른 하지철물 구조물의 거동에 관한 실험적 연구)

  • Hong, Seonguk;Kim, Seunghun;Baek, Kiyoul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.190-198
    • /
    • 2018
  • In recent years, non-welded building hardware has been installed by bolt assembly is used. The non-welded building hardware method can reduce accidents caused by welding, and can be constructed by bolt assembly, which can reduce labor costs and shorten the construction period. However, there is a need for a method to compensate for the occurrence of buckling at the time of construction. The purpose of this study is to evaluate the behavior of joints between steel pipe and fastener and to evaluate the behavior of joints of non-welded and welded hardware frame. As a result, it was found that the foundation steel structure without welded joints was deformed to a rotation angle of member much larger than the allowable interlayer displacement angle 0.01 to 0.02 required according to the seismic load rating in the seismic load resistance system.