• Title/Summary/Keyword: fossil

Search Result 1,770, Processing Time 0.174 seconds

Utilizing method for Bioenergy (바이오에너지의 극대활용방안)

  • 진수웅
    • Journal of the Korean Professional Engineers Association
    • /
    • v.34 no.5
    • /
    • pp.63-68
    • /
    • 2001
  • The terminology of bioenergy means the biomass. The urge to make biomass more Quantitative has led to the wide spread Inclusion of plants, grains and all organic substances. Biomass for nonelectrical uses In the our country accounts for approximately 2∼3% of the total energy consumption In 1999. Biomass also generally produces lower gas pollutant omission than fossil energies and to attractive because It's a renewable energy source .

  • PDF

Stable Isotope Profiles of the Fossil Mollusks from Marginal Marine Environment: Is Carbon from the Seasonal Methanogenesis?

  • Khim, Boo-Keun;Bock, Kathy-W.;Krantz, David-E.
    • Journal of the korean society of oceanography
    • /
    • v.32 no.2
    • /
    • pp.63-68
    • /
    • 1997
  • Stable isotope profiles with fine-scale resolution were constructed from the fossil mollusk shells, Mercernaria mercernaria, obtained from the late Pleistocene transgressive deposits of Gomez Pit, Virginia, USA. Incremental sampling were made along the axis of maximum growth to provide high-resolution ${\delta}^{18}$O and ${\delta}^{13}$C records. The ${\delta}^{18}$O shell profiles exhibit a series of pronounced cycles in the overall amplitude, corresponding to strong seasonal variations in temperature, which is apparently positive environmental variable. Contrasts between the patterns of ${\delta}^{18}$O and ${\delta}^{13}$C profiles reflect the relationship influencing the seasonal carbon cycling in the shallow marine environment. Positive anomalies of the ${\delta}^{13}$C values during the summer were observed to be out of phase with the ${\delta}^{18}$O profile. Such relatively heavier carbon source may be alternated due to seasonal methanogenesis during the summer. A hypothesized methane-based system may be operated in the shallow and marginal marine environment, resulting in a ${\delta}^{13}$C enriched bicarbonate pool, in which the heavier isotope seems to be incorporated to the shell carbonate.

  • PDF

Application of Biocathodes in Microbial Fuel Cells: Opportunities and Challenges

  • Gurung, Anup;Oh, Sang-Eun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.3
    • /
    • pp.410-420
    • /
    • 2012
  • The heavy reliance on fossil fuels, especially oil and gas has triggered the global energy crisis. Continued use of petroleum fuels is now widely recognized as unsustainable because of their depleting supplies and degradation to the environment. To become less dependent on fossil fuels, current world is shifting paradigm in energy by developing alternative energy sources mainly through the utilization of renewable energy sources. In particular, bioenergy recovery from wastes with the help of microorganism is viewed as one of the promising ways to mitigate the current global warming crisis as well as to supply global energy. It has been proved that microorganism can generate power by converting organic matter into electricity using microbial fuel cells (MFCs). MFC is a bioelectrochemical device that employs microbes to generate electricity from bio-convertible substrate such as wastewaters including municipal solid waste, industrial, agriculture wastes, and sewage. Sustainability, carbon neutral and generation of renewable energy are some of the major features of MFCs. However, the MFC technology is confronted with a number of issues and challenges such as low power production, high electrode material cost and so on. This paper reviews the recent developments in MFC technology with due consideration of electrode materials used in MFCs. In addition, application of biocathodes in MFCs has been discussed.

Simultaneous Removal Characteristics of Particulate and Elemental Mercury in Convergence Particulate Collector (융합형여과집진장치에서의 먼지입자와 원소수은의 제거 성능 특성)

  • Park, Young Ok;Jeong, Ju Yeong
    • Particle and aerosol research
    • /
    • v.6 no.4
    • /
    • pp.173-183
    • /
    • 2010
  • The high temperature pleated filter bags which were used during this study were made of pleated nonwoven fabric of heat and acid resistant polysulfonate fibers which can withstand the heat up to $300^{\circ}C$ and have a filtration area which is 3 to 5 times larger than the conventional round filter bags. Cartridge module packed with 3 kind of the sulfur impregnated activated-carbon based sorbents were inserted in the inner of the pleated filter bag. This type of pleated filter bag was designed to remove not only the particulate matter but also the gaseous elemental mercury. The electrostatic precipitator part can enhance the particulate removal efficiency and reduce the pressure drop of the pleated filter bag by agglomerated particles to form a more porous dust layer on the surface of the pleated bag which is increased the filter bag cleaning efficiency. In addition, the most of particles are separated from the flue gas stream through the cyclone and the electrostatic precipitator part which were installed at the lower part and main body part of the convergence particulate collector, respectively. Thus reduce particulate loading of the high temperature pleated filter bags were applied in this study to analyze the removal characteristics of particulate matter and gaseous elemental mercury.

Feasibility study of the energy supply system for horticulture facility using dynamic energy simulation (동적 에너지 시뮬레이션을 이용한 시설원예용 에너지 공급시스템의 경제성 분석)

  • Yu, Min-Gyung;Cho, Jeong-Heum;Nam, Yujin
    • KIEAE Journal
    • /
    • v.15 no.1
    • /
    • pp.103-109
    • /
    • 2015
  • Recently, the usage of renewable energy system has been recommended because of the energy saving and depletion of fossil fuel. Especially, ground source heat pump system(GSHP) has a high efficiency by using annual stable ground temperature. Also, wood pellet is low cost and a high calorific value compared to fossil fuel. However, only small number of farms have applied renewable energy system to horticultural facility because of a high initial costs and uncertainty of its cost efficiency. In this study, in order to analyze the feasibility for the horticulture, TRNSYS simulation based on the standard horticultural facility was conducted in different weather and covering material conditions. Then, comparative feasibility analysis of each energy supplying system was conducted. As a result, we have found out that a high initial cost of renewable energy system was recovered by the economics of the energy cost. Due to the energy cost reduction, the payback periods were 10-11 years in the case of GSHP and 4-6 years in the case of wood pellet boiler.

Spatial Patterns of Anthropogenic Carbon Emission and Terrestrial Net Productivity

  • Ohta, Shunji;Kimura, Ai
    • Journal of Environmental Science International
    • /
    • v.15 no.12
    • /
    • pp.1087-1091
    • /
    • 2006
  • This paper describes the current spatial patterns of the net primary productivity (NPP) of the terrestrial vegetation and carbon emission (C) in the world due to the burning of fossil fuels in order to clarify the amount of expansion of human activity. The C/NPP value varies spatially from almost zero to several tens of thousand times the local NPP. C/NPP is higher under the condition of extensive human activities due to a high human population density or when the local NPP is extremely low in severe climatic zones. In contrast, the low C/NPP areas are distributed mainly in sparsely populated districts, loading to a low impact of human activity. Although the area where C/NPP is less than 10% accounts for about 70% of the entire land area, one-third of these areas cannot contribute to carbon absorption because of low NPP with a shortage of climatic resources. Since more than half of the areas of the remaining areas are agricultural land and forest ecosystems with high NPP, the possible afforestation area was evaluated to be maximum of $30{\times}10^{6}\;km^{2}$; here only sequestrate carbons that correspond to 2% of the global total NPP are present. These analyses revealed that presently most of the areas where the NPP is high are those exclusively used by humans and that it is difficult for large-scale forest plantations to absorb a substantial amount of the carbon emitted annually by humans.

Experimental Evaluation of Filter Performance of Depth Filter Media Cartridge with Varying the Pleat Count and the Cartridge Assembly Arrangement

  • Hasolli, Naim;Park, Young-Ok;Rhee, Young-Woo
    • Particle and aerosol research
    • /
    • v.8 no.4
    • /
    • pp.133-141
    • /
    • 2012
  • A new depth filter media was designed and samples of flat sheet as well as cartridge assembly were prepared and tested to evaluate the filtration performance and compare with the commercial product. The arrangement of the depth filter media layers is important to reach the optimal filtration parameters like filter pressure drop, particle collection efficiency and dust holding capacity. Initially, both flat sheet samples of new media and commercial product have been tested using standard test units. Tests with new depth filter media cartridges of various pleat count were conducted in order to find the optimal pleat count which would represent the lowest pressure drop. These tests give an insight on how the pleat count and the assembly configuration affect the performance of the depth filter media cartridge. By comparing the samples with a commercial product we could confirm relatively high filtration performance of the sample cartridge with pleat count 150 made of new depth filter media. The cartridge with the same pleat count exhibits better performance without the outer mesh.

Status of Domestic Byproduct Hydrogen and Infrastructure (국내 부생수소 현황과 수소 유통 인프라)

  • Sim, Kyu-Sung;Kim, Jong-Won;Kim, Jung-Duk;Hwang, Gap-Jin;Kim, Heung-Sun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.13 no.4
    • /
    • pp.330-338
    • /
    • 2002
  • A long-term energy system in the future is expected to be based on the ideal circulation system between water and hydrogen in the sense that the hydrogen prepared from water eventually returns to water again after its use. Currently, with respect to the hydrogen energy system, it is predicted that the turning-point at which the production cost of hydrogen will become to be lower than that of fossil fuels would be after 2010. However, fuel cell technology would be able to be practically used for the applications to the transportation vehicles and small-scale power sources from 2004, and therefore, an efficient construction of the infrastructure covering hydrogen production and supply systems would be required with short-/mid-term technologies for the $CO_2$ reduction associated with fossil fuel utilization. In this paper, the hydrogen quantity available in domestic market has been estimated focusing on the hydrogen by-produced from domestic industries, and also the infrastructure for hydrogen-driven vehicles like fuel cell cars has been reviewed.

Development of a Plasma-Dump Reformer for Syngas Production (합성가스 생산을 위한 플라즈마-덤프 개질기 개발)

  • Lim, Mun Sup;Kim, Eun Hyuk;Chun, Young Nam
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.6
    • /
    • pp.586-593
    • /
    • 2014
  • Limited sources of fossil fuels and also global climate changes caused by $CO_2$ emissions are currently discussed around the world. As a renewable, carbon neutral and widely available energy source, biogas is regarded as a promising alternative to fossil fuels. In this study, a plasma dump reformer was proposed to produce $H_2$-rich synthesis gas by a model biogas. The three-phase gliding arc plasma and dump combustor were combined. Screening studies were carried out with the parameter of a dump injector flow rate, water feeding flow rate, air ratio, biogas component ratio and input power. As the results, methane conversion rate, carbon dioxide conversion rate, hydrogen selectivity, carbon monoxide yield at the optimum conditions were achieved to 98%, 69%, 42%, 24.7%, respectively.

Non-energy Use and $CO_2$ Emissions: NEAT Results for Korea

  • Park, Hi-chun
    • Journal of Energy Engineering
    • /
    • v.11 no.1
    • /
    • pp.34-46
    • /
    • 2002
  • Carbon accounting is a key issue in the discussions on global warming/CO$_2$mitigation. This paper applies both the IPCC Approach and the NEAT (Non-Energy use Emission Accounting Tables) model, a bottom-up approach, to estimate the potential CO$_2$ emissions (carbon storage) originating from the non-energy use as to assess the actual CO$_2$ emissions (carbon release) from the use of fossil fuels in Korea. The current Korean carbon accounting seems to overestimate the potential CO$_2$ emissions and with it to underestimate the actual CO$_2$ emissions. The estimation shows that the potential CO$_2$ emissions calculated according to the IPCC Approach are lower than those calculated using the NEAT model. This is because the IPCC default storage fraction for naphtha seems to be low for the Korean petrochemical production structure, on the one hand and because the IPCC Approach does not consider the trade with short life petrochemical products, on the other hand. This paper shows that a bottom-up approach like the NEAT model can contribute to overcome some of limitations of the IPCC guidelines, especially by considering the international trade with short life petrochemical products and by estimating the storage fractions of fossil fuels used as feedstocks for the country in consideration. This paper emphasizes the importance of accurate energy statistics for carbon accounting.