• Title/Summary/Keyword: forward modeling

Search Result 327, Processing Time 0.027 seconds

An Empirical Study on Predictive Modeling to enhance the Product-Technical Roadmap (제품-기술로드맵 개발을 강화하기 위한 예측모델링에 관한 실증 연구)

  • Park, Kigon;Kim, YoungJun
    • Journal of Technology Innovation
    • /
    • v.29 no.4
    • /
    • pp.1-30
    • /
    • 2021
  • Due to the recent development of system semiconductors, technical innovation for the electric devices of the automobile industry is rapidly progressing. In particular, the electric device of automobiles is accelerating technology development competition among automobile parts makers, and the development cycle is also changing rapidly. Due to these changes, the importance of strategic planning for R&D is further strengthened. Due to the paradigm shift in the automobile industry, the Product-Technical Roadmap (P/TRM), one of the R&D strategies, analyzes technology forecasting, technology level evaluation, and technology acquisition method (Make/Collaborate/Buy) at the planning stage. The product-technical roadmap is a tool that identifies customer needs of products and technologies, selects technologies and sets development directions. However, most companies are developing the product-technical roadmap through a qualitative method that mainly relies on the technical papers, patent analysis, and expert Delphi method. In this study, empirical research was conducted through simulations that can supplement and strengthen the product-technical roadmap centered on the automobile industry by fusing Gartner's hype cycle, cumulative moving average-based data preprocessing, and deep learning (LSTM) time series analysis techniques. The empirical study presented in this paper can be used not only in the automobile industry but also in other manufacturing fields in general. In addition, from the corporate point of view, it is considered that it will become a foundation for moving forward as a leading company by providing products to the market in a timely manner through a more accurate product-technical roadmap, breaking away from the roadmap preparation method that has relied on qualitative methods.

Elastic Wave Propagation in Nuclear Power Plant Containment Building Walls Considering Liner Plate and Concrete Cavity (라이너 플레이트 및 콘크리트 공동을 고려한 원전 격납건물 벽체의 탄성파 전파 해석)

  • Kim, Eunyoung;Kim, Boyoung;Kang, Jun Won;Lee, Hongpyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.3
    • /
    • pp.167-174
    • /
    • 2021
  • Recent investigation into the integrity of nuclear containment buildings has highlighted the importance of developing an elaborate diagnostic method to evaluate the distribution and size of cavities inside concrete walls. As part of developing such a method, this paper presents a finite element approach to modeling elastic waves propagating in the containment building walls of a nuclear power plant. We introduce a perfectly matched layer (PML) wave-absorbing boundary to limit the large-scale nuclear containment wall to the region of interest. The formulation results in a semi-discrete form with symmetric damping and stiffness matrices. The transient elastic wave equations for a mixed unsplit-field PML were solved for displacement and stresses in the time domain. Numerical results show that the sensitivity of displacement, velocity, acceleration, and stresses is large depending on the size and location of the cavity. The dynamic response of the wall slightly differs depending on the existence of the containment liner plate. The results of this study can be applied to a full-waveform inversion approach for characterizing cavities inside a containment wall.

Analysis of the Damaged Range Caused by LPG Leakage and Vapor Clouds Considering the Cold Air Flow (찬공기 흐름을 고려한 LPG 누출 및 증기운에 의한 피해 영향 범위 분석)

  • Gu, Yun-Jeong;Song, Bonggeun;Lee, Wonhee;Song, Byunghun;Shin, Junho
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.4
    • /
    • pp.27-35
    • /
    • 2022
  • When LPG leaks from the storage tank, the gas try to sink to the ground because LPG is heavier than air. The gas easily creates vapor clouds causing aggressive accidents in no airflow. Therefore, It is important to prevent in advance by analyzing the damaged range caused from LPG leakage and vapor clouds. So, this study analyzed the range of damaged by LPG leakage and vapor clouds with consideration of the cold air flow which is generated by the topographical characteristics and the land use status at night time in the Jeju Hagari. As a result of the cold air flow using KLAM_21, about 2 m/s of cold air was introduced in from the southeast due to the influence of the terrain. The range of damaged by LPG leakage and vapor cloud was analyzed using ALOHA. When the leak hole size is 10 cm at the wind speed of 2 m/s, the range corresponding to LEL 60 % (12,600 ppm) was 61 m which range is expected to influence in nearby residential areas. These results of this study can be used as basic data to prepare preventive measures of accidents caused by vapor cloud. Forward, it is necessary to apply CFD modeling such as FLACS to check the vapor cloud formation due to LPG leakage in a relatively narrow area and to check the cause analysis.

Estimation of the Source Adult Population for Agrotis ipsilon (Lepidoptera: Noctuidae) Appearing in Early Spring in Korea: An Approach with Phenology Modeling (국내에서 이른 봄 출현하는 검거세미밤나방 성충집단의 기원 추정: 페놀로지 모형을 통한 접근)

  • Sori Choi;Jinwoo Heo;Subin Kim;Myeongeun Jwa;Yonggyun Shin;Dong-Soon Kim
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.1
    • /
    • pp.37-47
    • /
    • 2023
  • The black cutworm, Agrotis ipsilon (Hufnagel), is an important crop pest worldwide that feeds more than 80 plant species including cabbage, potato, maize, wheat and bean, and this moth is a typical pest attacking underground parts of crops. It has been known in farm booklets that the larvae of A. ipsilon overwinter in the soil in Korea, but no definitive data exist yet. This study was conducted to evaluate that the specific appearance time of A. ipsilon observed actually in the field could be explained when we assumed that this pest overwinters in a form of larvae or pupae. Degree day-based phenology models were applied for tracking forward or backward to find the predicted developmental stage which developed at a specific stage found in the field. As a result of the analysis, it was confirmed that an initial population could be established in a group that does not overwinter as larvae or pupae in Korea. In other words, the appearance of adults in early March to April could not be explained by the presence of domestic overwintering populations. Populations that overwinter as larvae or pupae in Korea were able to emerge as adults in June to July at the earliest. Therefore, the group of adults appearing in early spring is highly likely to be a population that migrated from outside Korea. Taken together, it was estimated that the colony of A. ipsilon in Korea would be formed by a mixture of a migrant population through long-distance migration and a overwintering population.

MT Response of a Small Island Model with Deep Sea and Topography (깊은 바다와 지형을 고려한 소규모 섬 모델의 MT 반응 연구)

  • Kiyeon Kim;Seong Kon Lee;Seokhoon Oh;Chang Woo Kwon
    • Geophysics and Geophysical Exploration
    • /
    • v.27 no.1
    • /
    • pp.37-50
    • /
    • 2024
  • The magnetotelluric (MT) survey can be affected by external environmental factors. In particular, when acquiring MT data in islands, it is essential to consider the combined effect of topography and sea to understand the results and make accurate interpretations. To analyze the MT response (apparent resistivity, phase) with consideration of the effect of topography and sea, a small cone-shaped island model surrounded by deep sea was created. Two-dimensional (2-D) and three-dimensional (3-D) forward modeling were performed on the terrain model considering topography and the island model considering both topography and sea. The 2-D MT response did not reflect the topographic and sea effect of the direction orthogonal to the 2-D profile. The 3-D MT response included topographic and sea effects in all directions. The XY and YX components of the apparent resistivity were separated on undulating topography, such as a hill. A conductor at 1 km below sea level could be distinguished from topographic and sea effects in the MT response, and low resistivity anomaly was attenuated at greater depths. This study will facilitate understanding of field data measured on small islands.

S-wave Velocity Derivation Near the BSR Depth of the Gas-hydrate Prospect Area Using Marine Multi-component Seismic Data (해양 다성분 탄성파 자료를 이용한 가스하이드레이트 유망지역의 BSR 상하부 S파 속도 도출)

  • Kim, Byoung-Yeop;Byun, Joong-Moo
    • Economic and Environmental Geology
    • /
    • v.44 no.3
    • /
    • pp.229-238
    • /
    • 2011
  • S-wave, which provides lithology and pore fluid information, plays a key role in estimating gas-hydrate saturation. In general, P- and S-wave velocities increase in the presence of gas-hydrate and the P-wave velocity decreases in the presence of free gas under the gas-hydrate layer. Whereas there are very small changes, even slightly increases, in the S-wave velocity in the free gas layer because S-wave is not affected by the pore fluid when propagating in the free gas layer. To verify those velocity properties of the BSR (bottom-simulating reflector) depth in the gas-hydrate prospect area in the Ulleung Basin, P- and S-wave velocity profiles were derived from multi-component ocean-bottom seismic data which were acquired by Korea Institute of Geoscience and Mineral Resources (KIGAM) in May 2009. OBS (ocean-bottom seismometer) hydrophone component data were modeled and inverted first through the traveltime inversion method to derive P-wave velocity and depth model of survey area. 2-D multichannel stacked data were incorporated as an initial model. Two horizontal geophone component data, then, were polarization filtered and rotated to make radial component section. Traveltimes of main S-wave events were picked and used for forward modeling incorporating Poisson's ratio. This modeling provides S-wave profiles and Poisson's ratio profiles at every OBS site. The results shows that P-wave velocities in most OBS sites decrease beneath the BSR, whereas S-wave velocities slightly increase. Consequently, Poisson's ratio decreased strongly beneath the BSR indicating the presence of a free gas layer under the BSR.

Seismic study of the Ulleung Basin crust and its implications for the opening of the East Sea (탄성파 탐사를 통해 본 울릉분지의 지각특성과 동해형성에 있어서의 의미)

  • Kim, Han Jun
    • Journal of the Korean Geophysical Society
    • /
    • v.2 no.1
    • /
    • pp.9-26
    • /
    • 1999
  • The Ulleung Basin (Tsushima Basin) in the southwestern East Sea (Japan Sea) is floored by a crust whose affinity is not known whether oceanic or thinned continental. This ambiguity resulted in unconstrained mechanisms of basin evolution. The present work attempts to define the nature of the crust of the Ulleung Basin and its tectonic evolution using seismic wide-angle reflection and refraction data recorded on ocean bottom seismometers (OBSs). Although the thickness of (10 km) of the crust is greater than typical oceanic crust, tau-p analysis of OBS data and forward modeling by 2-D ray tracing suggest that it is oceanic in character: (1) the crust consists of laterally consistent upper and lower layers that are typical of oceanic layers 2 and 3 in seismic velocity and gradient distribution and (2) layer 2C, the transition between layer 2 and layer 3 in oceanic crust, is manifested by a continuous velocity increase from 5.7 to 6.3 km/s over the thickness interval of about 1 km between the upper and lower layers. Therefore it is not likely that the Ulleung Basin was formed by the crustal extension of the southwestern Japan Arc where crustal structure is typically continental. Instead, the thickness of the crust and its velocity structure suggest that the Ulleung Basin was formed by seafloor spreading in a region of hotter than normal mantle surrounding a distant mantle plume, not directly above the core of the plume. It seems that the mantle plume was located in northeast China. This suggestion is consistent with geochemical data that indicate the influence of a mantle plume on the production of volcanic rocks in and around the Ulleung Basin. Thus we propose that the opening models of the southwestern East Sea should incorporate seafloor spreading and the influence of a mantle plume rather than the extension of the crust of the Japan Arc.

  • PDF