• Title/Summary/Keyword: forward error control

Search Result 169, Processing Time 0.024 seconds

Trajectory Following Control Using Cogging Force Model in Linear Positioning System

  • Chung, Myung-Jin;Gweon, Dae-Gab
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.3
    • /
    • pp.62-68
    • /
    • 2002
  • To satisfy the requirement of the one axis linear positioning system, which is following control of the desired trajectory without following error and is the high positioning accuracy, feed-forward loop having cogging force model is proposed. In the one axis linear positioning system with linear PM motor, cogging force acting as disturbance is modeled analytically. Analytic model of cogging force is verified by result measured from positioning system constructed with linear PM motor. Measured result is very similar with proposed analytic model. Cogging force model is used as feet forward loop in control scheme of linear positioning system. Cogging force feed-forward'loop is obtained from analytic model of cogging farce. Trajectory following error is reduced from 300nm to 100nm by applying the proposed cogging farce feed-forward loop. By using analytic model of cogging force, the control scheme is simplified. Also this analytic model is applicable to calculation of characteristic value of positioning system in design process.

Intelligent Predictive Control of Time-Varying Dynamic Systems with Unknown Structures Using Neural Networks (신경회로망에 의한 미지의 구조를 가진 시변동적시스템의 지능적 예측제어)

  • Oh, S.J
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.3
    • /
    • pp.286-286
    • /
    • 1996
  • A neural predictive tracking system for the control of structure-unknown dynamic system is presented. The control system comprises a neural network modelling mechanism for the the forward and inverse dynamics of a plant to be controlled, a feedforward controller, feedback controller, and an error prediction mechanism. The feedforward controller, a neural network model of the inverse dynamics, generates feedforward control signal to the plant. The feedback control signal is produced by the error prediction mechanism. The error predictor adopts the neural network models of the forward and inverse dynamics. Simulation results are presented to demonstrate the applicability of the proposed scheme to predictive tracking control problems.

Intelligent Predictive Control of Time-Varying Dynamic Systems with Unknown Structures Using Neural Networks (신경회로망에 의한 미지의 구조를 가진 시변동적시스템의 지능적 예측제어)

  • Oh, Se-Joon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.3
    • /
    • pp.154-161
    • /
    • 1996
  • A neural predictive tracking system for the control of structure-unknown dynamic system is presented. The control system comprises a neural network modelling mechanism for the the forward and inverse dynamics of a plant to be controlled, a feedforward controller, feedback controller, and an error prediction mechanism. The feedforward controller, a neural network model of the inverse dynamics, generates feedforward control signal to the plant. The feedback control signal is produced by the error prediction mechanism. The error predictor adopts the neural network models of the forward and inverse dynamics. Simulation results are presented to demonstrate the applicability of the proposed scheme to predictive tracking control problems.

  • PDF

Design of robust stable hybrid controllers for active noise/vibration control (능동 소음 및 진동 제어에 사용되는 강인안정한 하이브리드 제어기의 설계)

  • Oh, Shi-Hwan;Park, Young-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.431-436
    • /
    • 2000
  • Adaptive feed forward control algorithms based largely upon LMS approach have developed in recent two decades, and they have been widely applied to practical sound and vibration control problems in the case of the reference signal is available. Feedforward control can be applied only when reference signals can be measured or regenerated, while feedback controllers are used to reduce; sound and vibration when reference signals are not available. In recent years, hybrid control schemes in which adaptive feed forward controllers are combined with feedback ones have been studied based on simulations and experiments. The results have shown that the hybrid control may have better control performances in convergence speed and steady state error than the single control schemes. Hybrid control has the advantages of improving stability and performance as well as the disturbance rejection property. However, little effort has been made to the analysis or interpretation of hybrid control systems. In this study, we discussed the feedback controller effects on the stability of feed forward control algorithm in the presence of uncertain error path and a simple example showed that a stable feedback controller could make the feedforward controller unstable. A design criterion of feedback controllers is proposed in order to guarantee the stability of feedforward algorithms in the presence of error paths with uncertainties.

  • PDF

A Study on the Robust Speed Control Characteristics of Induction Motor Using State Observer (상태 관측기를 이용한 유도전동기의 강인한 속도 제어특성에 관한 연구)

  • 이성근;노창주;김윤식;오진석
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.5
    • /
    • pp.503-511
    • /
    • 1997
  • In 3 phase induction motor control system, the speed control using the load torque observer becomes robust against disturbances by means of a feed-forward control of the estimated load torque component. In case of variation of inertia moment, the estimated load torque has error because the observer uses the nominal inertia to estimate the load torque. And so, it is difficult to obtain good speed control characteristics. This paper has two study target strategy. First, we executes feed-forward control with the load torque observer when motor inertia has nominal value and compare it with conventional PI con¬trol. The second strategy estimates inertia moment error using the load torque observer when inertia moment change. The proposed two strategy is confirmed through the computer simulations and the experimental implementations by TMS320C31 microprocessor.

  • PDF

Adaptive Forward Error Correction Scheme for Real-Time Communication in Satellite IP Networks

  • Cho, Sung-Rae
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.6
    • /
    • pp.1116-1132
    • /
    • 2010
  • In this paper, a new forward error correction (FEC) protocol is proposed for point-to-multipoint satellite links. Link-layer error control protocols in point-to-multipoint satellite links impose several problems such as unreliability and receiver-heterogeneity. To resolve the problem of heterogeneous error rates at different receivers, the proposed scheme exploits multiple multicast channels to which each receiver tunes. The more channels a receiver tunes to, the more powerful error correcting capability it achieves. Based on its own channel condition, each receiver tunes to as many channels as it needs, which prevents from receiving unwanted parities. Furthermore, each receiver saves the decoding time, processing overhead, and processing energy. Performance evaluation shows that the proposed scheme guarantees the target PER while saving energy. The proposed technique is highly adaptive to the channel variation with respect to the throughput efficiency, and provides scalable PER and throughput efficiency.

A Path Control Model to Evaluation Handling Characteristic of Vehicles (조종안정성 평가를 위한 경로제어모델)

  • 탁태오;최재민
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.1
    • /
    • pp.139-147
    • /
    • 2001
  • In this study a path control scheme of simulation models of various vehicles to evaluate their handling characteristic is developed. Based on the forward target method, path deviation error is estimated and the required steering effort to reduce the error is computed by Ziegler-Nichols PID control rule. Velocity control model is also included in the proposed path control scheme to achieve the desired velocity. The path control scheme is implemented on a full vehicle model to perform ISO test procedures, such as steady state cornering, lane change, and sinusoidal input, etc. Through the simulations of ISO test procedures and comparison with actual tests, effectiveness and validity of the path control model is demonstrated.

  • PDF

VLSI Implementation of Forward Error Control Technique for ATM Networks

  • Padmavathi, G.;Amutha, R.;Srivatsa, S.K.
    • ETRI Journal
    • /
    • v.27 no.6
    • /
    • pp.691-696
    • /
    • 2005
  • In asynchronous transfer mode (ATM) networks, fixed length cells of 53 bytes are transmitted. A cell may be discarded during transmission due to buffer overflow or a detection of errors. Cell discarding seriously degrades transmission quality. The quality degradation can be reduced by employing efficient forward error control (FEC) to recover discarded cells. In this paper, we present the design and implementation of decoding equipment for FEC in ATM networks based on a single parity check (SPC) product code using very-large-scale integration (VLSI) technology. FEC allows the destination to reconstruct missing data cells by using redundant parity cells that the source adds to each block of data cells. The functionality of the design has been tested using the Model Sim 5.7cXE Simulation Package. The design has been implemented for a $5{\times}5$ matrix of data cells in a Virtex-E XCV 3200E FG1156 device. The simulation and synthesis results show that the decoding function can be completed in 81 clock cycles with an optimum clock of 56.8 MHz. A test bench was written to study the performance of the decoder, and the results are presented.

  • PDF

Adaptive Feed-forward Control with Reference Model for Position Controller (기준모델과 피드포워드 적응제어를 사용한 위치제어기)

  • 윤명하;최남열;이치환
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.5
    • /
    • pp.413-418
    • /
    • 2002
  • This paper proposed a feed-forward adaptive position controller that is robust for variable Inertia. The control system consists of PI Position controller, feed-forward and model reference adaptive control. A parameter g(t) of the feed-forward adaptive position controller is adapted by using both the reference model speed and position error. So it improves the transient response and reduces the settling time. And normalization function Is used to make linear adaptation time. The validity of the feed-forward adaptive controller is confirmed by simulation results.

An Adaptive FEC based Error Control Algorithm for VoIP (VoIP를 위한 적응적 FEC 기반 에러 제어 알고리즘)

  • Choe, Tae-Uk;Jeong, Gi-Dong
    • The KIPS Transactions:PartC
    • /
    • v.9C no.3
    • /
    • pp.375-384
    • /
    • 2002
  • In the current Internet, the QoS of interactive applications is hardly guaranteed because of variable bandwidth, packet loss and delay. Moreover, VoIP which is becoming an important part of the information infra-structure in these days, is susceptible to network packet loss and end-to-end delay. Therefore, it needs error control mechanisms in network level or application level. The FEC-based error control mechanisms are used for interactive audio application such as VoIP. The FEC sends a main information along with redundant information to recover the lost packets and adjusts redundant information depending on network conditions to reduce the bandwidth overhead. However, because most of the error control mechanisms do not consider end-to-end delay but packet loss rate, their performances are poor. In this paper, we propose a new error control algorithm, SCCRP, considering packet loss rate as well as end-to-end delay. Through experiments, we confirm that the SCCRP has a lower packet loss rate and a lower end-to-end delay after reconstruction.