• Title/Summary/Keyword: forward dynamic

Search Result 482, Processing Time 0.032 seconds

PSiM Based Dynamic Analysis of Input Split Type Hybrid Electric Vehicle (PSiM기반의 입력분기방식 하이브리드 자동차의 모드 변환에 따른 동특성 해석)

  • Bae, Tae-Suk;Choi, Jae-Ho;Lim, Deok-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.4
    • /
    • pp.359-367
    • /
    • 2012
  • In this paper, the input split type series-parallel hybrid electric vehicle (SPHEV) is established and the interpretation of the dynamic characteristics in four kinds of HEV modes, such as electric vehicle mode, engine mode, hybrid mode, and regeneration mode, is described. For this research, the forward-facing approach simulation method is chosen, which is useful for vehicle dynamic analysis. The rating of each powertrain component is designed based on energy-based concept and electrical peaking hybrid (ELPH) method. Finally, the designed powertrain is evaluated with the developed PSiM simulator and simulation results are shown.

The Admissible Multiperiod Mean Variance Portfolio Selection Problem with Cardinality Constraints

  • Zhang, Peng;Li, Bing
    • Industrial Engineering and Management Systems
    • /
    • v.16 no.1
    • /
    • pp.118-128
    • /
    • 2017
  • Uncertain factors in finical markets make the prediction of future returns and risk of asset much difficult. In this paper, a model,assuming the admissible errors on expected returns and risks of assets, assisted in the multiperiod mean variance portfolio selection problem is built. The model considers transaction costs, upper bound on borrowing risk-free asset constraints, cardinality constraints and threshold constraints. Cardinality constraints limit the number of assets to be held in an efficient portfolio. At the same time, threshold constraints limit the amount of capital to be invested in each stock and prevent very small investments in any stock. Because of these limitations, the proposed model is a mix integer dynamic optimization problem with path dependence. The forward dynamic programming method is designed to obtain the optimal portfolio strategy. Finally, to evaluate the model, our result of a meaning example is compared to the terminal wealth under different constraints.

Effects of Kinesio-taping on Balance Abilities and Proprioception Sense

  • Cho, Sung Hak;Moon, Hyun Ju
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.8 no.2
    • /
    • pp.1163-1167
    • /
    • 2017
  • The purpose of this study was to compare the effects of Kinesio taping in each area of the ankle versus the knee to improve balance abilities and proprioception sense. The healthy twenty eight students were divided into two groups, Group A and B. Ankle taping was applied to Group A, and knee taping was applied to Group B. In the ankle taping group, significant increase of dynamic balance abilities was appeared in the forward, left ward and right ward (p<.05). In the knee taping group, there was significant increase of dynamic balance abilities in the forward and left ward (p<.05). There was no significant increase of static balance abilities in both groups. In both groups of ankle and knee taping, there was significant increase of proprioception sense. These findings suggest that ankle and knee taping was helpful for improving dynamic balance abilities and proprioception sense.

Parameter Identification for the Tractor Dynamic Model by use of a Forced Vibration Experiment

  • R.Noguchi;O.Kinoshita;E.Inoue;Na, K.kano
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.1117-1126
    • /
    • 1993
  • Physical parameters in the forward direction of the tractor , which mainly affects the vibration characteristics of the tractor dynamic model, were able to be identified in a short time by using the Gauss-Newton method with extremum searching based on the data obtained from a forced vibration experiment. It was clarified that a period for the updating of the parameter estimates method has effects on the convergence accuracy of identification for the spring constant in the forward direction of the tractor.

  • PDF

Study on the Correlation Between Physical Function and Forward Head Posture in Spastic Diplegia (경직형 양하지 뇌성마비 아동의 전방머리자세와 신체기능간의 상관관계)

  • Jo, Yong-Eun;Lee, Eun-Ju
    • PNF and Movement
    • /
    • v.19 no.2
    • /
    • pp.163-172
    • /
    • 2021
  • Purpose: This study investigated the correlation between physical function and forward head posture in spastic diplegia. Methods: The subjects of this study were 10 spastic diplegia patients. We took pictures of the subjects' craniovertebral angle with a digital camera to determine the degree of forward head posture and then analyzed them using the NIH image J program. The physical function test used the TCMS, the BBT, and a spirometer. The data in this study were measured using SPSS version 23.0, and the statistical significance level α was 0.05. A Pearson correlation coefficient analysis was performed to identify the correlation between the degree of the subject's head forward position and physical function. Results: When we performed the BBT and spirometer tests, the subjects' forward head postures were not correlated (p < 0.05). However, with the TCMS, there was a strong correlation between the forward position of the head and balance, with balance decreasing as the head position increased (p < 0.05). Conclusion: Spastic diplegia patients with severe forward head posture showed problems with static balance, dynamic balance, and equilibrium reaction when sitting. Intervention on the right posture and preventive activities will be needed to improve the health of spastic diplegia patients and prevent future problems with physical function.

Dynamic responses of a freestanding bridge tower under wave and wave-current loads

  • Wei, Chengxun;Wang, Wenjing;Zhou, Daocheng
    • Structural Engineering and Mechanics
    • /
    • v.82 no.4
    • /
    • pp.491-502
    • /
    • 2022
  • A model experiment with a scale of 1:150 has been conducted to investigate the dynamic responses of a freestanding four-column bridge tower subjected to regular wave, random wave and coupled wave-current actions. The base shear forces of the caisson foundation and the dynamic behaviors of the superstructure were measured and analyzed. The comparisons of the test values with the theoretical values shows that wave-induced base shear forces on the bridge caisson foundation can be approximated by using a wave force calculation method in which the structure is assumed to be fixed and rigid. Although the mean square errors of the base shear forces excited by joint random wave and current actions are approximately equal to those excited by pure random waves, the existence of a forward current increases the forward base shear forces and decreases the backward base shear forces. The tower top displacements excited by wave-currents are similar to those excited by waves, suggesting that a current does not significantly affect the dynamic responses of the superstructure of the bridge tower. The experiment results can be used as a reference for similar engineering design.

Effects of a Complex Exercise Program using Dynamic Taping on Patients with Tension-Type Headache and Chronic Neck Pain with Forward Head Posture (다이나믹 테이핑을 적용한 복합 운동프로그램이 긴장성 두통과 전방머리자세를 동반한 만성 목 통증 환자에게 미치는 효과)

  • Park, Sam-Ho;Jung, Seung-Hwa
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.10 no.4
    • /
    • pp.23-34
    • /
    • 2022
  • Purpose : This study examined the effects of pain, neck dysfunction, psychosocial level, headache impact test (HIT), postural alignment, and trapezius muscle tone of the complex exercise program using dynamic taping in patients with tension headache and chronic neck pain with forward head posture. Methods : The design of this is a randomized controlled trial (RCT). Thirty-four patients with chronic neck pain were screened using a randomized assignment program and assigned to experimental group (n=17) and control group (n=17). Both groups underwent a complex exercise program. In addition, the experimental group dynamic taping was applied to the upper trapezius muscle. All interventions were applied three times per week for four weeks. The visual analogue scale (VAS), the neck disability index (NDI), short form-12 health survey questionnaire (SF-12), Headache impact test-6 (HIT-6), Craniovertebral angle (CVA), Cranial rotation angle (CRA), upper trapezius muscle tone were compared to evaluate the effect on intervention. Results : Both groups showed significant differences before and after the intervention in VAS, NDI, SF-12, HIT-6, and CVA, CRA (p<.05). In addition, significant differences in NDI and upper trapezius muscle tone were observed between the experimental group and control group (p<.05). Conclusion : A complex exercise program using dynamic taping for patients with tension headache and chronic neck pain with forward head posture are effective method with clinical significance in improving the function and reducing upper trapezius muscle tone.

Multiperiod Mean Absolute Deviation Uncertain Portfolio Selection

  • Zhang, Peng
    • Industrial Engineering and Management Systems
    • /
    • v.15 no.1
    • /
    • pp.63-76
    • /
    • 2016
  • Multiperiod portfolio selection problem attracts more and more attentions because it is in accordance with the practical investment decision-making problem. However, the existing literature on this field is almost undertaken by regarding security returns as random variables in the framework of probability theory. Different from these works, we assume that security returns are uncertain variables which may be given by the experts, and take absolute deviation as a risk measure in the framework of uncertainty theory. In this paper, a new multiperiod mean absolute deviation uncertain portfolio selection models is presented by taking transaction costs, borrowing constraints and threshold constraints into account, which an optimal investment policy can be generated to help investors not only achieve an optimal return, but also have a good risk control. Threshold constraints limit the amount of capital to be invested in each stock and prevent very small investments in any stock. Based on uncertain theories, the model is converted to a dynamic optimization problem. Because of the transaction costs, the model is a dynamic optimization problem with path dependence. To solve the new model in general cases, the forward dynamic programming method is presented. In addition, a numerical example is also presented to illustrate the modeling idea and the effectiveness of the designed algorithm.

Dynamic Characteristics Improvement of a Step-Down Chopper Using Load Current Feed-Forward Compensator (부하전류 전향보상기를 이용한 강압쵸퍼의 동특성 항상)

  • Chun, Ji-Young;Jeon, Kee-Young;Chung, Chun-Byung;Han, Kyung-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.12
    • /
    • pp.29-35
    • /
    • 2008
  • In this paper, The author present a load current feed-forward compensator by method that improve voltage controller of Step-down Chopper to get stable output voltage to sudden change of load current. To confirm the characteristics of a presented load current feed-forward compensator compared each transfer function of whole system that load current feed-forward compensator is added with transfer function of whole system that existent voltage controller is included using Mason gains formula in Root locus and Bode diagram. As a result the pole of system is improved, extreme point of the wave and system improves, and size of peak value and phase margin of break frequency in resonance frequency confirmed that is good. Therefore, presented control technique could confirm that reduce influence by perturbation and improves stationary state and dynamic characteristics in output of Step-down Chopper.

Novel Position Controller for PMSM Based on State Feedback and Load Torque Feed-Forward

  • Zheng, Zedong;Li, Yongdong;Fadel, Maurice
    • Journal of Power Electronics
    • /
    • v.11 no.2
    • /
    • pp.140-147
    • /
    • 2011
  • In this paper, a novel position controller based on state feedback and feed-forward is proposed. Traditional position and speed controllers are replaced by a single controller with the position and speed as state feedbacks, and the position command and load torque as feed-forwards. The feedback and feed-forward gains are obtained by analytic modeling and design. The load torque, rotor speed and position are estimated by an observer based on a Kalman filter (KF) with a low resolution mechanical position sensor. Feed-forward compensation by an estimated load torque is used to improve the dynamic performance during load torque changes.