• 제목/요약/키워드: forming temperature

검색결과 1,404건 처리시간 0.027초

PbO-B$_2$O$_3$-TiO$_2$-BaO계의 유리화에 대한 전이온도 및 성분 원소비의 영향 (Effects of Transition Temperature and Atomic Ratio on Glass Formation Tendency in the PbO-B$_2$O$_3$-TiO$_2$-BaO System)

  • 이선우;심광보;오근호
    • 한국세라믹학회지
    • /
    • 제35권12호
    • /
    • pp.1274-1279
    • /
    • 1998
  • The glass forming ability of the PbO-B2O3-TiO3-BaO system was investigated in relation to transitieon tem-peratures and the atomic ratio between constituents. Glass forming tendency was improved as the tem-peratures and the atomic ratio between constituents. Glass forming tendency was improved as the tem-perature differences between liquidus temperature and crystallization(or glass transition) temperature de-creased and the temperature difference between crystallization and glass transition temperature increases. The atomic ratio could be used as a criterion to deign glass systems. The interposition of B and Ba atoms between Pb and Ti atoms was one of important factors in glass formation.

  • PDF

Plastification procedure of laterally-loaded steel bars under a rising temperature

  • Huang, Zhan-Fei;Tan, Kang-Hai;England, George L.
    • Structural Engineering and Mechanics
    • /
    • 제35권6호
    • /
    • pp.699-715
    • /
    • 2010
  • This paper investigates the structural responses of axially restrained steel beams under fire conditions by a nonlinear finite element method. The axial restraint is represented by a linear elastic spring. Different parameters which include beam slenderness ratio, external load level and axial restraint ratio are investigated. The process of forming a mid-span plastic hinge at the mid-span under a rising temperature is studied. In line with forming a fully plastic hinge at mid-span, the response of a restrained beam under rising temperature can be divided into three stages, viz. no plastic hinge, hinge forming and rotating, and catenary action stage. During catenary action stage, the axial restraint pulls the heated beam and prevents it from failing. This study introduces definitions of beam limiting temperature $T_{lim}$, catenary temperature $T_{ctn}$ and warning time $t_{wn}$. Influences of slenderness ratio, load level and axial restraint ratio on $T_{lim}$, $T_{ctn}$ and $t_{wn}$ are examined.

아몰퍼스 판재 성형의 스프링 백에 관한 연구 (A Study on Spring Back in Sheet Forming of Amorphous Alloys)

  • 윤상헌;이용신
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1757-1760
    • /
    • 2005
  • This paper is concerned with spring back after sheet forming of bulk amorphous alloys in the super cooled liquid state. The temperature-dependence and strain-rate dependence of Newtonian/non-Newtonian viscosities as well as the stress overshoot/undershoot behavior of amorphous alloys are reflected in the thermo-mechanical Finite Element simulations. Hemispherical deep drawing operations are simulated for various forming conditions such as punch velocity, die corner radius, friction, blank holder force, clearance and initial forming temperature. Here, spring back by an instantaneous elastic unloading was followed by thermal deformation during cooling and two modes of spring backs are examined in detail. It could be concluded that the superior sheet formability of an amorphous alloy can be obtained by taking the proper forming conditions for loading/unloading.

  • PDF

An efficient finite element analysis model for thermal plate forming in shipbuilding

  • S.L. Arun Kumar;R. Sharma;S.K. Bhattacharyya
    • Ocean Systems Engineering
    • /
    • 제13권4호
    • /
    • pp.367-384
    • /
    • 2023
  • Herein, we present the design and development of an efficient finite element analysis model for thermal plate forming in shipbuilding. Double curvature shells in the ship building industries are primarily formed through the thermal forming technique. Thermal forming involves heating of steel plates using heat sources like oxy-acetylene gas torch, laser, and induction heating, etc. The differential expansion and contraction across the plate thickness cause plastic deformation and bending of plates. Thermal forming is a complex forming technique as the plastic deformation and bending depends on many factors such as peak temperature, heating and cooling rate, depth of heated zone and many other secondary factors. In this work, we develop an efficient finite element analysis model for the thermo-mechanical analysis of thermal forming. Different simulations are reported to study the effect of various parameters affecting the process. Temperature dependent properties are used in the analysis and the finite element analysis model is used to identify the critical flame velocity to avoid recrystallization of plate material. A spring connected plate is modeled for structural analysis using spring elements and that helps in identifying the resultant shapes of various thermal forming patterns. Finally, detailed simulation results are reported to establish the efficacy, applicability and efficiency of the designed and developed finite element analysis model.

냉각성형공법이 트렁크 플로어 드로잉성에 미치는 영향 (Effect of Cold Forming Method on Drawability Trunk Floor Panel)

  • 최치수;최이천;오영근;이정우;이항수
    • 소성∙가공
    • /
    • 제10권2호
    • /
    • pp.123-129
    • /
    • 2001
  • This study is to investigate the effects of cold forming method with steel sheet of SCP3C to improve continuous productivity. Experiments were carried out in various working conditions, such as the number of stamping and the punch temperature. The effects of the punch temperature and the number of stamping on drawability of steel sheet of SCP3C as well as clearance and draw-in in the number of stamping were examined and discussed. More improvement of continuous productivity in case of cold stamping rather than by conventional stamping at room temperature is obtained. The optimum forming condition for drawing trunk floor panel of SCP3C is shown as the punch is cooled by coolant of $-5^{\circ}C$ and at the same time both the die and the blankholder are heated by stamping and frictional heat.

  • PDF

크랭크 프레스와 유압 프레스에서 스테인리스 강판의 온간 드로잉성 비교 (Comparison of Warm Deep Drawability of Stainless Steel Sheet Between Crank Press and Hydraulic Press)

  • 김종호;최치수;나경환
    • 소성∙가공
    • /
    • 제4권4호
    • /
    • pp.345-352
    • /
    • 1995
  • Warm deep drawing for optimum forming conditions to give the maximum drawing depth is investigated and compared with the results from experiments performed at room temperature. Experiments which draw square cups of STS 304 stainless steel sheet under the constant lubrication condition of teflon film are made both in a crank and hydraulic press for two kinds of specimens. The maximum drawing depth at warm forming condition reaches 1.4 times the drawing depth at room temperature in a crank press, whereas 1.6 times in a hydraulic press, and also more uniform distribution of thickness in case of warm deep drawn cup is observed. The effects of other factors on formability, such as forming temperature, speed of press and cooling of punch are examined and discussed.

  • PDF

마그네슘 합금 판재의 온간 딥드로잉 해석 (Analysis of warm Deep Drawing of Magnesium Alloy Sheet)

  • 이명한;김헌영;김형종;오수익
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 춘계학술대회 논문집
    • /
    • pp.294-297
    • /
    • 2007
  • Due to their low densities and high specific strength and stiffness, magnesium alloy sheets are very attractive lightweight materials for automotive and electrical products. However, the magnesium alloy sheets are usually formed at elevated temperature because of their poor formability at room temperature. To use of the magnesium alloy sheets for an industrial, their mechanical properties at elevated temperature and appropriate forming process conditions have to be developed. In this study, non-isothermal simulations of a square cup drawing from magnesium alloy sheets have been conducted to evaluate a proper forming process conditions such as the tool temperature, the tool shoulder radius, friction between the blank and the tools. According to this study, appropriate forming process conditions of square cup drawing at elevated temperature from magnesium alloy sheets are suggested.

  • PDF

AZ31B 마그네슘 합금판재의 온간 성형한계도 및 스프링백 특성 시험 (Experiments for Forming Limit Diagram and Springback Characteristics of AZ31B Magnesium Alloy Sheet at Elevated Temperature)

  • 최선철;이한수;김형종;이경택;김헌영
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 춘계학술대회 논문집
    • /
    • pp.289-293
    • /
    • 2007
  • The effect of temperature on the forming limit diagram was investigated for AZ31B magnesium alloy sheet through the limit dome height test in the range from room temperature to $300^{\circ}C$. The formability of AZ31B sheet was improved significantly according to the increasing temperature. Also we studied the springback characteristics through the 2D draw bending test with different blank holding forces at elevated temperatures. Springback quantity was considerably reduced as temperature went up. The blank holding force in the range used, however, had little influence on springback. Experimental results obtained in this study may provide a material database for AZ31B sheet.

  • PDF

AZ31B 마그네슘 합금판재의 온간 성형한계도 및 스프링백 특성 시험 (Experiments for Forming Limit Diagram and Springback Characteristics of AZ31B Magnesium Alloy Sheet at Elevated Temperature)

  • 김헌영;최선철;이한수;김형종;이경택
    • 소성∙가공
    • /
    • 제16권5호통권95호
    • /
    • pp.364-369
    • /
    • 2007
  • The effect of temperature on the forming limit diagram was investigated for AZ31B magnesium alloy sheet through the limit dome height test in the range from room temperature to $300^{\circ}C$. The formability of AZ31B sheet was improved significantly according to the increasing temperature. Also we studied the springback characteristics through the 2D draw bending test with different blank holding forces at elevated temperatures. Springback quantity was considerably reduced as temperature went up. The blank holding force in the range used, however, had little influence on springback. Experimental results obtained in this study may provide a material database for AZ31B sheet.

냉간 가공용 인산염 피막처리의 저온화에 관한 연구 (A Study on Low Temperature Phosphating for Cold Forming)

  • 이만식;정충택;이광호;김준호;이근대;홍성수
    • 한국표면공학회지
    • /
    • 제35권5호
    • /
    • pp.279-288
    • /
    • 2002
  • Zinc phosphating for cold forming of steel was studied with emphasis on decreasing phosphating temperature. To lower phosphating temperature, some techniques, such as adding Cu ion into bath, using activator in the form of pre-dip, and aeration in bath, instead of using conventional accelerator, namely oxidizing agent, have been tried. It was revealed that phosphating, leading to coatings of Improved uniformity and fine crystal size, can be carried out using above techniques at lower temperature ($55^{\circ}C$) compared to conventional phosphating temperature ($80 ~ 90^{\circ}C$ ). Under present condition, it was seen that optimum concentrations of Cu ion in phosphating bath and activator in pre-dip are 0.015% (w/w) and 2.0 g/1, respectively. The coating weight was within the range of 15 ~ 20 g/$\m^2$. When lubricant was applied into phosphating coatings, the amount of lubricating component (total soap) was found to be 6 ~ 10 g/$\m^2$ and the lubricated panel revealed excellent lubricating properties.