• 제목/요약/키워드: forming limits diagram (FLD)

검색결과 11건 처리시간 0.021초

레이저 용접 합체박판의 성형한계도와 스탬핑 금형 성형해석에 적용 (Forming Limit Diagram of Laser Welded Blank and Its Application to Forming Analysis of Stamping Dies)

  • 금영탁;구본영;박승우;유석종;이경남
    • 소성∙가공
    • /
    • 제9권1호
    • /
    • pp.3-9
    • /
    • 2000
  • The new FLD of the laser welded blank, which includes FLCs of welded zone and base metals, is introduced. For the forming limits of welded zone, the hemispherical dome punch tests were performed with various widths of asymmetric specimen. The FLC0 as well as the dome height at fracture associated with various specimen widths in the same and different thickness combinations were found to see the formability depending on thickness combinations. In order to show the application of the new FLD, the measured strains of squared cup drawing and simulated strains of door inner panel stamping were compared with those of FLCs. The successful prediction of fracture in the applications reveals that the forming limits of welded zone and base metals should be separately found for more accurate evaluation of the formability and workability of the laser welded blank.

  • PDF

시간의존법에 의한 금속판재 성형한계변형률의 결정 (Determination of the Forming Limit Strain of Sheet Metals by the Time-dependent Method)

  • 김성곤;오태환;김진동;김형종
    • 소성∙가공
    • /
    • 제24권5호
    • /
    • pp.361-367
    • /
    • 2015
  • The forming limit diagram (FLD) is the most commonly used tool for evaluating of sheet metal formability in the manufacturing field as well as the finite element analysis (FEA)-based design process. Determination of the forming limits is considerably influenced by testing/measuring machines, techniques and conditions. These influences may cause a large scatter in FLD from laboratory to laboratory. Scatter is especially true when the ‘position-dependent method’, as is specified in most national and international standards, is used. In the current study a new ‘time-dependent method’ is proposed, which is to determine the forming limit strains more accurately and reasonably when producing a FLD from experimental data. This method is based on continual strain measurement during the test. The results are compared to those from the existing standardized methods.

유한요소해석을 이용한 마그네슘 합금 판재 성형한계도의 실용적 작성 방법 (Practical Method for FLD of Mg Alloy Sheet using FEM)

  • 김경태;이형욱;김세호;송정한;이근안;최석우;이용신
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 추계학술대회 논문집
    • /
    • pp.183-185
    • /
    • 2008
  • Forming Limit Diagram(FLD) is a representative tool for evaluating formability of sheet metals. This paper presents a methodology to determine the FLD using Finite Element Method. For predicting the forming limits numerically. Previous methods such as using the thickness strain or the ductile fracture criterion are limited at plane strain domain. These results suggest that behavior of the void growth in sheet metals is different from real one. In contrast to previous methods, a more exact model which takes void growth into account is used. This result agrees with the experimental result qualitatively.

  • PDF

AZ31 합금 판재의 변형모드에 따른 성형한계에 관한 연구 (Forming Limits Diagram of AZ31 Alloy Sheet with the Deformation Mode)

  • 정진호;이영선;권용남;이정환
    • 소성∙가공
    • /
    • 제17권7호
    • /
    • pp.473-480
    • /
    • 2008
  • Sheet metal forming of Mg alloy is usually performed at elevated temperature because of the low formability at room temperature. Therefore, strain rates affected with the forming temperature and speed must be considered as important factor about formability. Effects of process parameters such as various temperatures and forming speeds were investigated in circular cup deep drawing. From the experimental results, it is known that LDR (Limit Drawing Ratio) increase as the strain rate increase. On the contrary, the FLD (Forming Limit Diagram) shows lower value as faster strain rate. Therefore, anisotropy values are investigated according to the temperature and strain rates at each forming temperature. R-values also represent higher value as faster strain rate. It is known that the formability can be different with the deformation mode on warm forming of AZ31 alloy sheet.

레이저 합체박판의 성형한계평가 실험에 관한 연구 (Experimental Investigation on Forming Limit of Laser Welded Blank Sheets)

  • 박승우;구본영;금영탁;강수영;류석종
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1997년도 추계학술대회논문집
    • /
    • pp.72-75
    • /
    • 1997
  • In this paper, the forming limits of laser welded blank sheets are introduced, obtained from a tensile test and a hemispherical dome punch test. Especially, the forming limit diagram(FLD) on the heat affected zone with a width 2.54mm is emphasized. Also, the experimental experiences in finding specific strain conditions are discussed.

  • PDF

무금형 점진 판재 성형에서 공구경로 최적화를 위한 성형한계에 관한 연구 (Studies on the forming limits for optimization of the tool path in Dieless incremental sheet metal forming)

  • 이승진;김민철;이영선;권용남;이정환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.249-252
    • /
    • 2005
  • Recently, as the industrial demand for small quantity batch production of sheet metal components, the application of dieless forming technology to production of these component rise with the advantages of the reduction in manufacturing cost and time. In dieless forming processes, the determination of moving path of tool plays an important role in producing successfully formed parts. In order to obtain the optimized moving path of tool avoiding forming failure, it is necessary to examine the forming limit of sheet material. Therefore, in this study, as the new criterion to evaluate the formability of sheet material in dieless forming processes FDD(feeding depth diagram) with respect to feeding depth and punch diameter is proposed. Thus, the FDD for the sheet materials of STS304 and Ti-grade2 were obtained from a series of FDT(feeding depth test). In addition the possibility of the application of FLD in judging forming severity in dieless forming processes was investigated by comparing the results of FE analyses based on FLD and experimental FDT.

  • PDF

용접판재의 성형한계에 관한 실험적 연구 (Forming Limits for the Welded Sheets)

  • 허영무;김형목;서대교
    • 소성∙가공
    • /
    • 제8권5호
    • /
    • pp.429-436
    • /
    • 1999
  • In sheet metal forming , forming limit diagram is very important to design and analyze of sheet metal forming process. Recently tailor welded blanks of different thickness and different material and strength combinations are used widely in automobile industry to reduce car manufacturing cost. In order to analyze the forming characteristics of tailored welded blanks, we have investigated the forming limit dia-grams for 3 kinds of different material using mash seam and laser welding experimentally and dis-cussed for the characteristics of forming for tailor welded blanks. It is concluded that forming limit dia-gram for the different material combination TWB locates between FLD of the thinner base material sheet and the thicker ones.

  • PDF

핫스탬핑 공정에서 Tailor Rolled Blank 의 성형 특성을 고려한 성형한계 예측 (Limits Considering the Deformation Characteristics of Tailor Rolled Blank during Hot Stamping)

  • 김재홍;고대훈;서판기;김병민
    • 소성∙가공
    • /
    • 제23권6호
    • /
    • pp.351-356
    • /
    • 2014
  • The current study aims to predict the forming limits considering the deformation characteristics of tailor rolled blank(TRB) during hot stamping. The formability of TRB is affected by the TRB line orientation because elongations change due to the intrinsic geometry within the sheet. To evaluate the forming limits, Nakazima tests were conducted at elevated temperatures with different TRB line orientations. Forming limit diagrams(FLD) of TRB can be predicted by an interpolating equation based on the Nakazima test. Predicted FLDs were used in FE-simulations of a rectangular drawing. The predicted limit drawing height was compared with experimental results. The simulation results show good agreement with the experimental ones with an error range of 3%.

자동차용 다상복합조직강판의 성형한계 평가 (Evaluation of Forming Limits of Automotive Muti-phase Steel Sheets)

  • 이승열;정지용;박성호;김상헌;금영탁
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.195-198
    • /
    • 2009
  • In this study, in order to get the forming limit of AHSS sheet in the negative minor strain region, the shapes of die corner and drawbead are redesigned by employing the Taguchi's design of experiment method and the FEM forming simulation. With the redesigned FLD tool, the forming limit tests of automotive multi-phase(Dual Phase and Complex Phase) steel sheets which induce the normal fractures on the blank are performed.

  • PDF

Finite element computer simulation of twinning caused by plastic deformation of sheet metal

  • Fuyuan Dong;Wang Xu;Zhengnan Wu;Junfeng Hou
    • Steel and Composite Structures
    • /
    • 제47권5호
    • /
    • pp.601-613
    • /
    • 2023
  • Numerous methods have been proposed in predicting formability of sheet metals based on microstructural and macro-scale properties of sheets. However, there are limited number of papers on the optimization problem to increase formability of sheet metals. In the present study, we aim to use novel optimization algorithms in neural networks to maximize the formability of sheet metals based on tensile curve and texture of aluminum sheet metals. In this regard, experimental and numerical evaluations of effects of texture and tensile properties are conducted. The texture effects evaluation is performed using Taylor homogenization method. The data obtained from these evaluations are gathered and utilized to train and validate an artificial neural network (ANN) with different optimization methods. Several optimization method including grey wolf algorithm (GWA), chimp optimization algorithm (ChOA) and whale optimization algorithm (WOA) are engaged in the optimization problems. The results demonstrated that in aluminum alloys the most preferable texture is cube texture for the most formable sheets. On the other hand, slight differences in the tensile behavior of the aluminum sheets in other similar conditions impose no significant decreases in the forming limit diagram under stretch loading conditions.