• Title/Summary/Keyword: forming impact

Search Result 245, Processing Time 0.027 seconds

Development of Vehicle Door Side Impact Beam with High Tensile Steel using Roll Forming Process (고장력 소재로 롤-포밍 공법에 의한 자동차 도어 사이드 임팩트 빔 개발)

  • Son, Hee-Jin;Kim, Sung-Yuk;Oh, Beom-Seok;Kim, Key-Sun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.6
    • /
    • pp.82-87
    • /
    • 2012
  • The purpose of this study is to produce a side impact beam with high tensile steel using a roll forming process. The door side impact beam plays an important roll in a car because it protects passengers from external crash. The roll forming process is a continuous bending process wherein a long metal sheet is bended as it continuously passes several rolls. The characteristic of this study is that an impact beam is produced by a continuous process using a ultra high strength steel without a hardening heat treatment. A model was determined by analysing plasticity of a cross section shape considering high strength. Design parameters of the impact beam was determined by crash-analysing the model. Workpiece products were manufactured by designing dies for roll forming and setting them up in a following process line. Results of a bending test and a FEM analysis was considered and reviewed.

Experimental Study of Pattern Emboss Forming using an Electromagnetic Force (전자기력을 이용한 압인 패턴 성형의 실험적 연구)

  • An, W.J.;Noh, H.G.;Kang, B.S.;Kim, J.
    • Transactions of Materials Processing
    • /
    • v.23 no.6
    • /
    • pp.363-368
    • /
    • 2014
  • Electromagnetic forming(EMF) is one of the high-speed forming methods, and has been used to deform metal sheets. The advantages of electromagnetic forming are reduced wrinkling due to non-contact characteristic and fine formability because of the high speed impact. In the current study, we suggest the application of electromagnetic forming to emboss pattern shapes using electromagnetic forces with only one forming coil and one punch. The high impact of the sheet at speeds of 100~300m/s produces significant coining pressure. In the current paper, electromagnetic forming was applied to Al 1100-O sheets; with thickness of 1.27mm and an area of $40mm{\times}40mm$. Using a single spiral coil, totally different types of patterns were created. Four different patterns were successfully produced on the aluminum sheet. The length and depth of the patterns were measured by three-dimensional scanning. Comparisons to the die shape showed good agreement. The test results confirm that emboss pattern forming by EMF using a single die can be used to replace the costly conventional method.

Crash Analysis of the ULSAB-AVC Model with Considering Forming Effects (박판성형가공을 고려한 자동차 충돌해석)

  • Huh, H.;Yoon, J.H.;Bao, Y.D.;Kim, S.H.;Park, S.H.
    • Transactions of Materials Processing
    • /
    • v.15 no.8 s.89
    • /
    • pp.556-561
    • /
    • 2006
  • Most of auto-body members are composed of stamping parts. These parts have the non-uniform thickness and plastic work hardening distribution during the forming process. This paper is concerned with the side impact analysis of the ULSAB-AVC model according to the US-SINCAP in order to compare the crashworthiness between the model with and without considering the forming effect. The forming effect is ca]ciliated by one-step forming analysis for several members. The crashworthiness is investigated by comparing the deformed shape of the cabin room the energy absorption characteristics and the intrusion velocity of a car. The result of the crash analysis demonstrates that the crash mode, the load-carrying capacity and energy absorption can be affected by the forming effect. It is noted that the design of an autobody should be carried out considering the forming effect for accurate assessment of crashworthiness.

Study on the moving device of press machine for forming impact reduction (성형충격 저감을 위한 프레스 구동기구에 관한 연구)

  • Kim, Jeong-Eon;Hong, Seok-Kwan;Kim, Jong-Deok;Heo, Young-Moo;Cho, Chong-Du;Kang, Jeong-Jin
    • Design & Manufacturing
    • /
    • v.2 no.4
    • /
    • pp.11-15
    • /
    • 2008
  • In the sheet metal forming using a high speed press machine, driving device, such as crank, link, and knuckle mechanism, has to be designed in consideration of impact at a moment when press die contact with material, because the impact affects a dimensional accuracy of products and a life span of press die. In this study, dynamic analysis was performed using numerical simulation in order to verify the impact reduction effect for proposed double knuckle mechanism by estimating rolling and pitching moment of slide.

  • PDF

A Study on the Production of the Back Beam for a Automotive Bumper by Roll Forming Process (롤 성형 공정에 의한 자동차용 범퍼빔 제조에 관한 연구)

  • 정동원;이문용;김광희
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.7
    • /
    • pp.163-170
    • /
    • 2003
  • The back beam for a automotive bumper was roll formed to improve performance, reduce weight and save cost. For the back beams produced by conventional stamping and roll forming, the crashworthiness analyses were carried out by numerical simulation and real impact test. The characteristic properties and applicability of the roll formed back beam are discussed from the results of the analyses.

Application of Laser Welded Tailored Blank for Automobile Bumper Beam (레이저 용접 블랭크 응용 자동차 범퍼 개발)

  • Seo, Jung;Han, Yu-Hee;Kim, Tae-Il;Lee, Moon-Yong;Lee, Kwang-Hyun
    • Laser Solutions
    • /
    • v.2 no.1
    • /
    • pp.51-60
    • /
    • 1999
  • In this paper, weldability and formability of Tailored-Blank (TB) and the structural impact testing of bump beam were investigated to apply TB to automobile bumper beam. The optimal $CO_2$ laser welding condition for TB of SPFC and SPRC steel plates with different thicknesses was obtained. Before welding, the cross section of butt joint was prepared only by shearing without milling process. Real type bump beam was produced by two kind of forming processes such as roll-forming and press-forming, and the good formability of TB was obtained. Impact test results of bump by using pendulum and barrier were satisfied the impact regulation of bump. Finally. It may be confirmed that laser welded TB is well-balanced material in both weight reduction and production cost of automobile bump.

  • PDF

Bumper Stay Design for RCAR Front Low Speed Impact Test (RCAR 전방 저속 충돌시험 대응 범퍼 스테이 설계)

  • Kang, Sungjong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.2
    • /
    • pp.191-197
    • /
    • 2016
  • RCAR low speed impact test estimates repair cost of the impacted vehicle. In this study, for a mid-size vehicle front body model, structural performance for RCAR low speed impact were analyzed with changing the bumper stay shape and size. First, for improving the impact load transfer mechanism to side member the stay rear section shape at connecting area with side member was modified and the stay outer was redesigned to be normal to the barrier. Next, the investigation on stay thickness effect was carried out and the performances of several models with different forming shape were compared. The final design showed 13mm decrease in the maximum barrier intrusion distance and greatly reduced side member deformation. Additional analyses explained the validity of the final design.

A Study on the comparison of FEM and FEM for Backward Impact Extrusion Process (후방 충격압출 성형 공정의 FVM과 FEM의 적용성에 관한 연구)

  • 정상원;조규종;김성훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1565-1568
    • /
    • 2003
  • The backward extrusion process is one of the commonly used metal forming processes. In this paper. a battery case which has the rectangular section, is analyzed using a 3D metal forming package(MSC.Superforge). This pacakge uses the finite volume analysis method. It is shown that the MSC.Superforge package using finite volume method provides result very close to those obtained from a finite element analysis package(MSC.Superform). However, the simulation time using the finite volume method was almost 10 % of the simulation time consumed by the other package using finite element method. Moreover, the finite volume method used in MSC.Superforge can eliminate the remeshing problems that make the simulating a metal forming process with severe deformation, such as the extrusion process, so difficult.

  • PDF

The effect of strain rate on the instability of sheet metal (변형율속도가 판재의 불안정에 미치는 영향)

  • 백남주;한규택
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.5
    • /
    • pp.935-943
    • /
    • 1988
  • The forming limit diagram is assessed as a means of estimating the forming characteristics of sheet metal and is usually determined experimentally. The strain rates used in the determination are likely to be low. However, often in practice, the strain rates are much higher, so if forming limit diagram is determined at low rates, it may not be appropriate. This paper reconsiders the forming limit diagram for mild steel and aluminum sheet up to variation in strain rate from 10$^{-2}$ sec to 20/sec where its forming has been carried out under oil pressure using a hydraulic bulge test with circular and elliptical dies. To obtain higher strain rate, an impact bulge test had been employed with the same die sets as those used for a hydraulic bulge test. The results obtained are as follows: (1) As the strain rate increases, the fracture pressure increases and the polar height at fracture decreases. (2) Experiment has shown that, in the positive quadrant of the forming limit diagram, the diagram is lowered with increasing strain rate and the effect of strain rate changes according to strain paths and materials..