• 제목/요약/키워드: formation temperature

검색결과 5,167건 처리시간 0.033초

Charge Transfer Complexing Between Indole Derivatives and Methylviologen and Effects of Sodium Dodecyl Sulfate on It

  • Joon Woo Park;Sung-Jin Kim
    • Bulletin of the Korean Chemical Society
    • /
    • 제5권3호
    • /
    • pp.121-126
    • /
    • 1984
  • The charge transfer complex formations between indole derivatives and methylviologen were investigated spectroscopically. In aqueous solutions near room temperature, the order of complex stability was tryptamine < tryptophan < indole < indole acetate, which is the reverse order of the magnitude of molar absorptivities. This was interpreted as involvement of contact charge transfer. The decrease of enthalpy of complex formation (-${\Delta}$H) was highest in tryptamine, and lowest in indole acetate. ${\Delta}$H and entropy of complex formation (${Delta}$S) varied nearly in a linear fashion with isokinetic temperature $242^{\circ}$K. These results were attributed to the hydration-dehydration properties of the side chains in indole derivatives. Except indole acetate, the complex formations were greatly enhanced by the addition of sodium dodecyl sulfate(SDS). However, the direct relationship between the enhanced complex formation and SDS micelle formation was not found. The enhanced charge transfer interaction inSDS solutions was attributed to the increased ${\Delta}$S by interaction between methylviologen and SDS in premicellar level. The order of complex stability in SDS solutions was indole acetate < tryptophan < trypamine < indole, which reflects the hydrophobicity of indole derivatives as well as electrostatic interaction between indole derivatives and methylviologen associated with SDS.

Thermal plasticity of growth and chain formation of the dinoflagellates Alexandrium affine and Alexandrium pacificum with respect to ocean acidification

  • Lee, Chung Hyeon;Min, Juhee;Lee, Hyun-Gwan;Kim, Kwang Young
    • ALGAE
    • /
    • 제36권4호
    • /
    • pp.285-298
    • /
    • 2021
  • The amount of CO2 absorbed by the oceans continues to rise, resulting in further acidification, altering some functional traits of phytoplankton. To understand the effect of elevated partial pressures of CO2 (pCO2) on functional traits of dinoflagellates Alexandrium affine and A. pacificum, the cardinal temperatures and chain formation extent were examined under two pCO2 (400 and 1,000 µatm) over the range of temperature expected to be associated with growth. The growth rate and chain formation extent of A. affine increased with higher pCO2, showing significant changes in cardinal temperatures and a substantial increase in middle chain-length (4-8 cells) fractionation under elevated pCO2 condition. By contrast, there were no significant differences in specific growth rate and any chain-length fractionation of A. pacificum between ambient and elevated pCO2 conditions. The observed interspecies variation in the functional traits may reflect differences in ability of species to respond to environmental change with plasticity. Moreover, it allows us to understand the shifting biogeography of marine phytoplankton and predict their phenology in the Korea Strait.

CHIP생성 및 절삭열 발생기구 해석을 위한 유한요소법 적용에 관한 연구 (A Study on the Applications of Finite Element Techniques to Chip Formation and Cutting Heat Generation Mechanism of Cutting Process)

  • 황준;남궁석
    • 한국정밀공학회지
    • /
    • 제12권9호
    • /
    • pp.148-155
    • /
    • 1995
  • The object of this study is to achieve a gteater understanding of meterial removal process and its mechanism. In this study, some applications of finite element techniques are applied to analyze the chip formation and cutting heat generation mechanism of metal cutting. To know the effect of cutting parameters, simulations employed some independent cutting variables change, such as constitutive deformation laws of workpiece and tool material, frictional coefficients and tool-chip contact interfaces, cutting speed, tool rake angles, depth of cut and this simulations also include large elastic-plastic defor- mation, adiabetic thermal analysis. Under a usual plane strain assumption, quasi-static, thermal-mechanical coupling analysis generate detailed informations about chip formation process and cutting heat generation mechanism Some cutting parameters are affected to cutting force, plastic deformation of chip, shear plane angle, chip thickness and tool-chip contact length and reaction force on tool, cutting temperature and thermal behavior. Several aspects of the metal cutting process predicted by the finite element analysis provide information about tool shape design and optimal cutting conditions.

  • PDF

복합 티타늄실리사이드 공정에서 발생한 공극 생성 연구 (Void Defects in Composite Titanium Disilicide Process)

  • 정성희;송오성
    • 한국재료학회지
    • /
    • 제12권11호
    • /
    • pp.883-888
    • /
    • 2002
  • We investigated the void formation in composite-titanium silicide($TiSi_2$) process. We varied the process conditions of polycrystalline/amorphous silicon substrate, composite $TiSi_2$ deposition temperature, and silicidation annealing temperature. We report that the main reason for void formation is the mass transport flux discrepancy of amorphous silicon substrate and titanium in composite layer. Sheet resistance in composite $TiSi_2$ without patterns is mainly affected by silicidation rapid thermal annealing (RTA) temperature. In addition, sheet resistance does not depend on the void defect density. Sheet resistance with sub-0.5 $\mu\textrm{m}$ patterns increase abnormally above $850^{\circ}C$ due to agglomeration. Our results imply that $sub-750^{\circ}C$ annealing is appropriate for sub 0.5 $\mu\textrm{m}$ composite X$sub-750_2$ process.

New Thermal-Aware Voltage Island Formation for 3D Many-Core Processors

  • Hong, Hyejeong;Lim, Jaeil;Lim, Hyunyul;Kang, Sungho
    • ETRI Journal
    • /
    • 제37권1호
    • /
    • pp.118-127
    • /
    • 2015
  • The power consumption of 3D many-core processors can be reduced, and the power delivery of such processors can be improved by introducing voltage island (VI) design using on-chip voltage regulators. With the dramatic growth in the number of cores that are integrated in a processor, however, it is infeasible to adopt per-core VI design. We propose a 3D many-core processor architecture that consists of multiple voltage clusters, where each has a set of cores that share an on-chip voltage regulator. Based on the architecture, the steady state temperature is analyzed so that the thermal characteristic of each voltage cluster is known. In the voltage scaling and task scheduling stages, the thermal characteristics and communication between cores is considered. The consideration of the thermal characteristics enables the proposed VI formation to reduce the total energy consumption, peak temperature, and temperature gradients in 3D many-core processors.

$La(Ba)Ga(Mg)O_3_\delta$계 Perovskite 산화물의 생성상 및 산소이온전도 (Phase Formation and Oxygen Ion Conduction of $La(Ba)Ga(Mg)O_3_\delta$ Perovskite Oxide System)

  • 이기태;김신;이홍림
    • 한국세라믹학회지
    • /
    • 제36권10호
    • /
    • pp.1056-1061
    • /
    • 1999
  • Phase formation and oxygen ion conduction of La(Ba)Ga(Mg)O3-$\delta$ system was studied, BaLaGa3O7 and BaLaGaO4 formed as a secondary phase above the solubility limit of Ba2+ in La3+ sites. The oxygen ionic conductivity of La(Ba)Ga(Mg)O3-$\delta$ was 0.1 S/cm 80$0^{\circ}C$ The activation energy of the oxygen ion conduction was dependent on temperature. This value was higher at low temperature than at high temperature.

  • PDF

고온에서 탄소/탄소 복합재료의 산화억제제의 영향 (The Effects of Inhibitors Impregnated in C/C Composite at High Temperature)

  • 최창구;이원종;박종욱
    • 한국세라믹학회지
    • /
    • 제28권6호
    • /
    • pp.478-482
    • /
    • 1991
  • Numerous researchers have observed the bubble formation from C/C composite at high temperature (1300$^{\circ}C$∼1700$^{\circ}C$). According to thermodynamic calculation, the bubble can be formed at the temperatures above 1500$^{\circ}C$ in the case of SiC coated C/C composite. However, the bubble below 1500$^{\circ}C$ could not be explained. Therfore, in an effort to explain the low temperature bubble formation, the effects of inhibitors such as B, Al, Zr and Si were thermodynamically investigated along with hydrogen and water vapor impurities resolved in C/C composite and SiC coating layer.

  • PDF

자전연소합성법에서의 알칼리염을 이용한 WC 분말의 제조 (Preparation of WC Powders by SHS Process in the Presence of Alkali Salts)

  • 원형일;;원창환
    • 한국세라믹학회지
    • /
    • 제44권3호
    • /
    • pp.152-156
    • /
    • 2007
  • Tungsten carbide powder was synthesized by SHS (self-propagating high-temperature synthesis). Except $WO_{3}$, each concentration of raw material ($WO_{3},\;Mg,\;NaCl,\;Na_{2}CO_{3},\;C$) was investigated. Final product was characterized by XRD and SEM. X-ray data demonstrated that the $NaCl+Na_{2}CO_{3}$ combined mixture has superiority in the WC formation process. Single phase and submicrometer WC powder was synthesized at the temperature below $1600^{\circ}C$. The role of sodium salts in combustion process was discussed, and chemical mechanism of WC formation was proposed. WC powder prepared by salt-assisted combustion synthesis has a size $0.2{\sim}3\;{\mu}m$ and low agglomeration degree.

알루미늄 주물 위 용탕열을 이용한 N-Al계 금속간화합물의 연소합성 코팅 (Ni-Al Based Intermetallics Coating Through SHS using the Heat of Molten Aluminum)

  • 이한영;조용재
    • 한국주조공학회지
    • /
    • 제31권2호
    • /
    • pp.83-86
    • /
    • 2011
  • Ni-Al based intermetallic compounds of self-propagating high-temperature synthesis (SHS) by the heat of molten aluminum and been coated on the aluminum casting alloy. The effects of the pouring temperature in casting and the thickness of casting substrate on SHS of the coating layer have been investigated. The experimental result showed that the reaction of the coating layer was activated with increasing the pouring temperature in casting and the thickness of casting substrate. However, the aluminum substrate was re-melted by the heat of formation for intermetallic compounds. Then, it was considered that some mechanical or thermal treatments for elemental powder mixtures were required to control the heat of formation for intermetallic compounds in advance.

Udimet 720Li 합금의 항온단조 변형특성 (Deformation Characteristics of Udimet 720Li during Isothermal Forging)

  • 염종택;나영상;박노광
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.190-193
    • /
    • 2001
  • Hot deformation behavior of Udimet 720Li was characterized by compression tests in the temperature range of $1025^{\circ}C\;to\;1150^{\circ}C$ and the strain rate rage of $0.0005s^{-1}\;to\;5s^{-1}$. In order to characterize the dependence of flow stress on strain, strain rate and temperature, a constitutive equation based on hyperbolic sine formation was used. Isothermal forging of Udimet 720Li was performed in the temperature range $1050-1150^{\circ}C$ at strain rates of $0.05s^{-1}\;and\;0.005s^{-1}$. FE simulation was also carried out to predict deformation microstructures during isothermal forging.

  • PDF