• Title/Summary/Keyword: formation dynamics

Search Result 465, Processing Time 0.034 seconds

THE INFLUENCES OF SWIRL FLOW ON FRACTIONAL FLOW RESERVE IN MILD/MODERATE/SEVERE STENOTIC CORONARY ARTERIAL MODELS (관상동맥 내의 나선형 유동이 협착도에 따라 분획 혈류 예비능에 미치는 영향에 관한 수치해석)

  • Lee, Kyung Eun;Kim, Gook Tae;Ryu, Ah-Jin;Shim, Eun Bo
    • Journal of computational fluids engineering
    • /
    • v.22 no.1
    • /
    • pp.15-25
    • /
    • 2017
  • Swirl flow is often found in proximal coronary arteries, because the aortic valves can induce swirl flows in the coronary artery due to vortex formation. In addition, the curvature and tortuosity of arterial configurations can also produce swirl flows. The present study was performed to investigate fractional flow reserve alterations in a post-stenotic distal part due to the presence of pre-stenotic swirl flow by computational fluid dynamics analysis for virtual stenotic models by quantifying fractional flow reserve(FFR). Simplified stenotic coronary models were divided into those with and without pre-stenotic swirl flow. Various degrees of virtual stenosis were grouped into three grades: mild, moderate, and severe, with degree of stenosis of 0 ~ 40%, 50 ~ 60%, and 70 ~ 90%, respectively. In this study, three-dimensional computational hemodynamic simulations were performed under hyperemic conditions in virtual stenotic coronary models by coupling with a zero-dimensional lumped parameter model. The results showed that the influence of pre-stenotic swirl inflow is dominant on FFR alteration in mild stenosis, whereas stenosis is dominant on FFR alteration in moderate/severe stenosis. The decrease in FFR caused by swirl flow is more significant in mild stenosis than moderate/severe stenosis. Biomechanical modeling is useful for clinicians to provide insight for medical intervention strategies. This hemodynamic-based parameter study could play a critical role in the development of a non-invasive imaging-based strategy-support system for percutaneous transluminal angioplasty in cases of mild/moderate stenosis.

Phosphorylation Status of RNA Polymerase II Carboxyl-terminal Domain in Porcine Oocytes and Early Embryos

  • Oqani, Reza K.;Zhang, Jin Yu;Lee, Min-Gu;Diao, Yun Fei;Jin, Dong-Il
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.6
    • /
    • pp.789-793
    • /
    • 2012
  • Fertilization of the oocyte commences embryogenesis during which maternally inherited mRNAs are degraded and the embryonic genome is activated. Transcription of embryonic mRNA is initiated by embryonic genome activation (EGA). RNA polymerase II (RNA Pol II) is responsible for the synthesis of mRNAs and most small nuclear RNAs, and consists of 12 subunits, the largest of which characteristically harbors a unique C-terminal domain (CTD). Transcriptional activity of RNA Pol II is highly regulated, in particular, by phosphorylation of serine residues in the CTD. Here, we have shown the presence of RNA Pol II CTD phosphoisoforms in porcine oocytes and preimplantation embryos. The distribution pattern as well as phosphorylation dynamics in germinal vesicles and during embryogenesis differed in developmental stages with these isoforms, indicating a role of RNA Pol II CTD phosphorylation at the serine residue in transcriptional activation during both oocyte growth and embryonic genome activation. We additionally examined the effects of the RNA Pol II inhibitor, ${\alpha}$-amanitin, on embryo development. Our results show that inhibition of polymerase, even at very early stages and for a short period of time, dramatically impaired blastocyst formation. These findings collectively suggest that the functionality of maternal RNA Pol II, and consequently, expression of early genes regulated by this enzyme are essential for proper embryo development.

Modeling and Simulation of the Linear Density Variation by Repetitive MD-Impacts in a Winding/Unwinding Control Process (Winding/Unwinding 제어공정에서 반복 충격에 기인한 MD-밀도 변동의 모델링과 시뮬레이션)

  • Huh You;Kim Hyung-J.;Kim Jong-S.;Chun Doo-H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.321-322
    • /
    • 2006
  • In many manufacturing processes such as web formation, manufacturing of paper and nonwoven, fabric weaving, etc., planar sheets are transported and at the same time appropriate tension is imposed. The input material rolled up on beams is fed by unwinding the beam and the processed is then taken up on beams by winding it. While processed, the planar sheets are thrown under the processing load of impulse form, which causes irregular thickness of the processed sheet. To improve the quality of the product, a dynamic model is needed and the dynamic characteristics is to be analyzed by simulation. This study shows that density variation dynamics of the in-process-sheet in the machine direction can be described at each moment of disturbing impacts in forms of difference equations, while the impacts and tension, the time-dependency of the material properties were taken into account. Simulation showed the most serious variation of the density occurred in the process starting phase. The starting velocity curve with step form showed the least variation of the density. As the time order of the function of the starting velocity cure becomes higher, the density variation gets greater.

  • PDF

Population Dynamics and Fitness Comparison of Sensitive and Resistant Phenotypes of Botrytis cinerea to Benzimidazole, Dicarboximide, and N-phenylar-bamate Fungicides

  • Kim, Byung-Sup;Park, Eun-Woo;Cho, Kwang-Yun
    • The Plant Pathology Journal
    • /
    • v.17 no.3
    • /
    • pp.149-153
    • /
    • 2001
  • A total of 2109 isolates of Botrytis cinerea were collected from infected plants fo strawberry, tomato, and cucumber in Korea from 1994 to 1996. Based on in virtotests for mycelial growth on potato-dextrose agar containing fungicides, the esolates were classified into six phenotypic groups : SSR, SRR, RSS, RRS, RSR, and RRR, representing sensitivity (S) or resistance (R) to carbendazim, procymidone, and diethofencarb. In that order the isolation frequencies of the SSR, SRR, RSS, RRS, RSR, and RRR phenotypes were 28.7, 1.1, 28.8, 39.4, 1.0, and 0.9%, respectively. Three isolates from each SSR, SRR, RSS, RRS, and RSR and an isolate of RRR phenotype were selected and evaluated for their fitness-related characteristics such as pathogenic aggressiveness, mycelial growth rate, sporulation, and sclerotial formation. Competitive abilities of the SSR, SRR, RSS, RRS, and RSR phenotypes were also compared by inculating mixtures of conidial suspensions of two phenotypes to cucumber plant, and then determining re-isolation frequencies from lesions. In general, significant differences in fitness-related characteristics, except pathogenic aggressiveness, were found not only between but also within phenotype groups. In the competitiveness tests, carbendazim-sinsitive phenotypes (SSR and SRR) were found to be more competitive than the resistant ones (RSS and RSR), whereas, the procymidone-resistant phenotypes (SRR and RRS) appeared to be more competitive than the sensitive ones (SSR, RSS, and RSR). There was no consistent dominance in competitiveness between the diethofencarb-resistant and sensitive phenotypes. The RSR phenotype was the least competitive among the five phenotypes.

  • PDF

Computer Simulation of Temperature Parameter for Diamond Formation by using Hot- Filament Chemical Vapor Deposition (온도 매개 변수의 컴퓨터 시뮬레이션을 통한 HF-CVD를 이용한 다이아몬드 증착 거동 분석)

  • Song, Chang-Won;Lee, Yong-Hui;Choe, Su-Seok;Hwang, Nong-Mun;Kim, Gwang-Ho
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.54-54
    • /
    • 2018
  • To optimize the deposition parameters of diamond films, the temperature, pressure, and distance between the filament and the susceptor need to be considered. However, it is difficult to precisely measure and predict the filament and susceptor temperature in relation to the applied power in the hot filament chemical vapor deposition (HFCVD) system. In this study the temperature distribution inside the system was numerically calculated for the applied powers of 12, 14, 16 and 18 kW. The applied power needed to achieve the appropriate temperature at a constant pressure and other conditions was deduced, and applied to actual experimental depositions. The numerical simulation was conducted using the commercial computational fluent dynamics software, ANSYS-FLUENT. To account for radiative heat-transfer in the HFCVD reactor, the discrete ordinate (DO) model was used. The temperatures of the filament surface and the susceptor at different power levels were predicted to be 2512 ~ 2802 K, and 1076 ~ 1198 K, respectively. Based on the numerical calculations, experiments were performed. The simulated temperatures for the filament surface were in good agreement with experimental temperatures measured using a 2-color pyrometer. The results showed that the highest deposition rate and the lowest deposition of non-diamond was obtained at a power of 16 kW.

  • PDF

Numerical Study on the Characteristics of Combustion and Emission in Pulverized Coal-fired Boiler for Using High Moisture Coal and Dry Coal (석탄화력보일러에서 고수분탄 및 건조석탄 사용에 따른 연소 및 배기배출 특성에 대한 전산해석 연구)

  • Ahn, Seok-Gi;Kim, Kang-Min;Kim, Gyu-Bo;Lee, Si-Hyun;Jeon, Chung-Hwan
    • Journal of Energy Engineering
    • /
    • v.26 no.4
    • /
    • pp.118-126
    • /
    • 2017
  • This study was performed to investigate the characteristics of combustion and emissions in pulverized coal fired boiler for using high moisture coal and dry coal through computational fluid dynamics(CFD). We validated this boiler model with performance data of the boiler. The results of flow characteristics showed that climbing speed of gases was increased as blending ratio of high moisture coal was increased. It can decrease a residence time of fuel in the furnace. And it influence coal combustion. The coal burnout and NOx generation in burner level were decreased as increasing blending ratio of high moisture coal. The gas temperature and NOx formation were increased after OFA level due to coal burnout delay.

A New Detergentless Micro-Emulsion System Using Urushiol as an Enzyme Reaction System

  • Kim, John-Woo-Shik;Yoo, Young-Je
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.3
    • /
    • pp.369-375
    • /
    • 2001
  • Urushiol, a natural monomeric oil, was used to prepare a detergentless micro-emulsion with water and 2-propanol The formation of micro-emulsion was verified by conductivity measurements and dynamic light scattering. The conductivity data showed phase change dynamics, a characteristics of micro-emulsions, and subsequent dynamic light scattering study further confirmed the phenomenon. Average water droplet diameter was 10 nm to 500 nm when the molar ratio of 2-propanol ranged from 0.40 to 0.44 . Earlier studies were performed on toluene and hexane, in which the insoluble substrate in water phase was added to the solvents to be reacted on by enzymes. However, in the present urushiol system, urushiol was used as both solvent and substrate in the laccase polymerization of urushiol. The laccase activity in the system was examined using polymerization of urushiol. The laccase activity in the system was examined using syringaldezine as a substrate, and the activity increased rapidly near the molar ratio of 2-propanol at 0.4, where micro-emulsion started. The activity rose until 0.46 and fell dramatically thereafter. The study of laccase activity in differing mole fractions of 2-propanol showed the existence of an ‘optimal zone’, where the activity of laccase was significantly higher. In order to analyze urushiol polymerization by laccase, a bubble column reactor using a detergentless micro-emulsion system was constructed. Comparative study using other organic solvents systems were conducted and the 2-propanol system was shown to yield the highest polymerization level. The study of laccase activity at a differing mole fraction of 2-propanol showed the existence of an ‘optimal zone’ where the activity was significantly higher. Also, 3,000 cP viscosity was achieved in actual urushi processing, using only 1/100 level of laccase present in urushi.

  • PDF

SOLAR CYCLE VARIATION OF MICROWAVE POLAR BRIGHTENING AND EUV CORONAL HOLE OBSERVED BY NOBEYAMA RADIOHELIOGRAPH AND SDO/AIA

  • Kim, Sujin;Park, Jong-Yeop;Kim, Yeon-Han
    • Journal of The Korean Astronomical Society
    • /
    • v.50 no.4
    • /
    • pp.125-129
    • /
    • 2017
  • We investigate the solar cycle variation of microwave and extreme ultraviolet (EUV) intensity in latitude to compare microwave polar brightening (MPB) with the EUV polar coronal hole (CH). For this study, we used the full-sun images observed in 17 GHz of the Nobeyama Radioheliograph from 1992 July to 2016 November and in two EUV channels of the Atmospheric Imaging Assembly (AIA) $193{\AA}$ and $171{\AA}$ on the Solar Dynamics Observatory (SDO) from 2011 January to 2016 November. As a result, we found that the polar intensity in EUV is anti-correlated with the polar intensity in microwave. Since the depression of EUV intensity in the pole is mostly owing to the CH appearance and continuation there, the anti-correlation in the intensity implies the intimate association between the polar CH and the MPB. Considering the report of Gopalswamy et al. (1999) that the enhanced microwave brightness in the CH is seen above the enhanced photospheric magnetic field, we suggest that the pole area during the solar minimum has a stronger magnetic field than the quiet sun level and such a strong field in the pole results in the formation of the polar CH. The emission mechanism of the MPB and the physical link with the polar CH are not still fully understood. It is necessary to investigate the MPB using high resolution microwave imaging data, which can be obtained by the high performance large-array radio observatories such as the ALMA project.

X-Ray, UV and Optical Observations of Classical Cepheids: New Insights into Cepheid Evolution, and the Heating and Dynamics of Their Atmospheres

  • Engle, Scott G.;Guinan, Edward F.
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.2
    • /
    • pp.181-189
    • /
    • 2012
  • To broaden the understanding of classical Cepheid structure, evolution and atmospheres, we have extended our continuing secret lives of Cepheids program by obtaining XMM/Chandra X-ray observations, and Hubble space telescope (HST) / cosmic origins spectrograph (COS) FUV-UV spectra of the bright, nearby Cepheids Polaris, ${\delta}$ Cep and ${\beta}$ Dor. Previous studies made with the international ultraviolet explorer (IUE) showed a limited number of UV emission lines in Cepheids. The well-known problem presented by scattered light contamination in IUE spectra for bright stars, along with the excellent sensitivity & resolution combination offered by HST/COS, motivated this study, and the spectra obtained were much more rich and complex than we had ever anticipated. Numerous emission lines, indicating $10^4$ K up to ${\sim}3{\times}10^5$ K plasmas, have been observed, showing Cepheids to have complex, dynamic outer atmospheres that also vary with the photospheric pulsation period. The FUV line emissions peak in the phase range ${\varphi}{\approx}0.8-1.0$ and vary by factors as large as $10{\times}$. A more complete picture of Cepheid outer atmospheres is accomplished when the HST/COS results are combined with X-ray observations that we have obtained of the same stars with XMM-Newton & Chandra. The Cepheids detected to date have X-ray luminosities of log $L_X{\approx}28.5-29.1$ ergs/sec, and plasma temperatures in the $2-8{\times}106$ K range. Given the phase-timing of the enhanced emissions, the most plausible explanation is the formation of a pulsation-induced shocks that excite (and heat) the atmospheric plasmas surrounding the photosphere. A pulsation-driven ${\alpha}^2$ equivalent dynamo mechanism is also a viable and interesting alternative. However, the tight phase-space of enhanced emission (peaking near 0.8-1.0 ${\varphi}$) favor the shock heating mechanism hypothesis.

Nutrient dynamics study of overlying water affected by peroxide-treated sediment

  • Haque, Niamul;Kwon, Sung-Hyun
    • Journal of Ecology and Environment
    • /
    • v.41 no.9
    • /
    • pp.235-245
    • /
    • 2017
  • Background: Loading of excess nutrient via bioremediation of polluted sediment to overlying water could trigger anoxia and eutrophication in coastal area. The aim of this research was to understand the changes of overlying water features such as dissolved oxygen (DO); pH; oxidation reduction potential (ORP); $chlorophyll-{\alpha}$ ($Chl-{\alpha}$); and nitrogen nutrients ammonia ($N-NH_4{^+}$), nitrate ($N-NO_3{^-}$), and nitrite ($N-NO_2^-$) when the sediment was not treated (control) and treated by calcium peroxide for 5 weeks. Methods: The water samples were analyzed for measuring physical and chemical properties along with the sediment analyzed by polymerase chain reaction (PCR) including denaturing gradient gel electrophoresis (DGGE) for identifying the phylogenetic affiliation of microbial communities. Results: Results showed that due to the addition of calcium peroxide in sediment, the overlying water exposed the rise of dissolve oxygen, pH, and ORP than control. Among the nitrogen nutrients, ammonia inhibition was higher in calcium peroxide treatment than control but in case of nitrate inhibition, it was reversed than control. $Chlorophyll-{\alpha}$ was declined in treatment column water by 30% where it was 20% in control column water. Actibacter and Salegentibacter group were detectable in the calcium-peroxide-treated sediment; in contrary, no detectable community ware found in control sediment. Both phylogenetic groups are closely related to marine microflora. Conclusions: This study emphasizes the importance of calcium peroxide as an oxygen release material. Interaction with peroxide proved to be enhancing the formation of microbial community that are beneficial for biodegradation and spontaneity of nutrient attenuation into overlying water.