• Title/Summary/Keyword: formation behaviors

Search Result 504, Processing Time 0.026 seconds

Numerical Analysis of Pressure and Temperature Effects on Residual Layer Formation in Thermal Nanoimprint Lithography

  • Lee, Ki Yeon;Kim, Kug Weon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.2
    • /
    • pp.93-98
    • /
    • 2013
  • Nanoimprint lithography (NIL) is a next generation technology for fabrication of micrometer and nanometer scale patterns. There have been considerable attentions on NIL due to its potential abilities that enable cost-effective and high-throughput nanofabrication to the display device and semiconductor industry. To successfully imprint a nanosized pattern with the thermal NIL, the process conditions such as temperature and pressure should be appropriately selected. This starts with a clear understanding of polymer material behavior during the thermal NIL process. In this paper, a filling process of the polymer resist into nanometer scale cavities during the thermal NIL at the temperature range, where the polymer resist shows the viscoelastic behaviors with consideration of stress relaxation effect of the polymer. In the simulation, the filling process and the residual layer formation are numerically investigated. And the effects of pressure and temperature on NIL process, specially the residual layer formation are discussed.

PL and TL behaviors of Ag-doped SnO2 nanoparticles: effects of thermal annealing and Ag concentration

  • Zeferino, R. Sanchez;Pal, U.;Melendrez, R;Flores, M. Barboza
    • Advances in nano research
    • /
    • v.1 no.4
    • /
    • pp.193-202
    • /
    • 2013
  • In this article, we present the effects of Ag doping and after-growth thermal annealing on the photoluminescence (PL) and thermoluminescence (TL) behaviors of $SnO_2$ nanoparticles. $SnO_2$ nanoparticles of 4-7 nm size range containing different Ag contents were synthesized by hydrothermal process. It has been observed that the after-growth thermal annealing process enhances the crystallite size and stabilizes the TL emissions of $SnO_2$ nanostructures. Incorporated Ag probably occupies the interstitial sites of the $SnO_2$ lattice, affecting drastically their emission behaviors on thermal annealing. Both the TL response and dose-linearity of the $SnO_2$ nanoparticles improve on 1.0% Ag doping, and subsequent thermal annealing. However, a higher Ag content causes the formation of Ag clusters, reducing both the TL and PL responses of the nanoparticles.

Effect of Acid Treatments on Hydrogen Storage Behaviors of Ordered Mesoporous Carbons (화학적 산처리가 중기공 탄소체의 수소저장거동에 미치는 영향)

  • Lee, Seul-Yi;Park, Soo-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.229.1-229.1
    • /
    • 2010
  • We investigated the effect of chemical acid treatments on hydrogen storage behaviors of the ordered mesoporous carbons (MCs). The surface functional groups and specific elements of the MCs were characterized with Fourier Transform Infrared (FT-IR) spectrometry and X-ray photoelectron spectroscopy (XPS). Also, the changes in the surface functional groups of the MCs were quantitatively detected by Boehm's titration method. The structural properties of the MCs were investigated using X-ray diffraction (XRD). The hydrogen adsorption capacity of the MCs was evaluated by means of adsorption isotherms at 77 K/1 bar. The formation of surface functional groups by the acidic treatments could influence on the hydrogen storage capacity of the MCs.

  • PDF

Particle Impact Damage behaviors in silicon Carbide Under Gas Turbine Environments-Effect of Oxide Layer Due to Long-Term Oxidation- (세라믹 가스터빈 환경을 고려한 탄화규소의 입자충격 손상거동-장기간 산화에 따른 산화물층의 영향-)

  • 신형섭
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.4
    • /
    • pp.1033-1040
    • /
    • 1995
  • To simulate strength reliability and durability of ceramic parts under gas turbine application environments, particle impact damage behaviors in silicon carbide oxidized at 1673 K and 1523 K for 200 hours in atmosphere were investigated. The long-term oxidation produced a slight increase in the static fracture strength. Particle impact caused a spalling of oxide layer. The patterns of spalling and damage induced were dependent upon the property and impact velocity of the particle. Especially, the difference in spalling behaviors induced could be explained by introducing the formation mechanism of lateral crack and elastic-plastic deformation behavior at impact sit. At the low impact velocity regions, the oxidized SiC showed a little increase in the residual strength due to the cushion effect of oxide layer, as compared with the as-received SiC without oxide layer.

Effects of Particle Size of Alumina on the Behaviors of Tape Casting and Sintering of Alumina-Talc System (알루미나-활석계에서 알루미나의 입자 크기가 테이프 케스팅 및 소결 거동에 미치는 영향)

  • 윤원균;김호양;이정아;김정주
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.12
    • /
    • pp.1213-1220
    • /
    • 1997
  • Effect of particle size of alumina and amount of talc on tape casting and densification behaviors of alumina-talc system were investigated. The pseudoplastic behaviors of slurries increased with increase in amount of talc addition and decrease in alumina particle size. In case of using coarse alumina powder, densification of specimens were accelerated with increase of sintering temperature and amount of talc addition. On the contrary, fine alumina powder retarded of rearrangement of alumina particle during liquid phase sintering due to premature densification of alumina matrix region before formation of liquid phase and then densification of specimens were suppressed with increase of sintering temperature and amount of talc addition.

  • PDF

A Numerical Investigation on the Dynamic Behaviors of Single Vortex in a Reacting and Non-reacting Jet Flow (반응과 비반응 제트유동에서 단일 와동의 동적 거동에 대한 수치해석적 연구)

  • Hwang Chul-Hong;Oh Chang-Bo;Lee Dae-Yup;Lee Chang-Eon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.05a
    • /
    • pp.35-40
    • /
    • 2002
  • The dynamic behaviors of the single vortex in a reacting and non-reacting methane-air jet flow were investigated numerically. The numerical method was based on a predictor-corrector for low Mach number flow A two-step global reaction mechanism was adopted as a combustion model. After fuel and air were developed entirely in computational domain, the single vortex was generated by an axisymmetric jet that was impulsed to emit a cold fuel. Through comparisons of single vortex in reacting and non-reacting jet flow, it was found that global dynamic behaviors and the mechanisms leading to the formation, transport processes of vortex ring were influenced significantly by heat release from reaction. In addition, the interaction between a single vortex and flame bulge generated by buoyance effect in a reacting jet flow was found.

  • PDF

The Effect of Health Promotion Behavior on Emotional Happiness

  • Lee, Byunghyun;Kim, Jungae
    • International Journal of Advanced Culture Technology
    • /
    • v.7 no.1
    • /
    • pp.20-27
    • /
    • 2019
  • This study was designed to examine the affect health promotion behavior to emotional happiness for 20-30's in Korea through cross-sectional descriptive research. There were a total of 279 people who participated in this study, 198(71.0%) were males and 81(29.0%) were females. The data collection period was from December 1 to 15, 2018. The tools used to measure health promotion behaviors were HPB (Health Promotion Behavior) developed by Walker et al., and emotional happiness was PANAS (Positive and Negative Affect Scale) by Developed by Watson et al., All data was analyzed using SPSS 18.0 program. As a result of analysis, 62 (49.6%) were solving interpersonal problems and stress relief while drinking, and the people who ate twice a day were most frequent. In conclusion, health promotion behaviors have a strong correlation with emotional happiness. Based on the above results, it was suggested that the program of happiness for lining in the 20-30s age groups should strengthen the contents of health responsibility, guidance of substance abuse, formation of social relations and self actualization.

Correlations between the diet and the exercise behavior to prevent osteoporosis (골다공증 예방에 관한 식이 및 운동 건강증진행위간의 관련성)

  • Han, Eun-Ok;Moon, In-Ok
    • The Journal of Korean Society for School & Community Health Education
    • /
    • v.6
    • /
    • pp.109-115
    • /
    • 2005
  • A survey was performed for 528 college students who are faced at a period of bone formation from Oct. 10 to Oct. 15, 2005 in order to investigate health promotion behaviors by the perceived benefit in diets and exercises and level of the self-efficacy and to extract certain directions to facilitate the level of health promotion behaviors in diets and exercises to prevent osteoporosis by investigating the correlation between these factors. 1. There are some differences in the health promotion behavior for each group according to the sex, grade, and majoring. 2. There are no significant differences between the perceived benefit in diets and exercises according to the health promotion behavior, and the self-efficacy in diets presented certain high levels in the group that presented a high level of health promotion behaviors (3.4744) than that of the group that presented a low level of health promotion behaviors(3.2099). In addition, the self-efficacy in exercises presented certain high levels in the group that presented a high level of health promotion behaviors(3.7528) than that of the group that presented a low level of health promotion behaviors(3.3085). 3. The most important factor that affects 'Health promotion behaviors in diets' was 'Self-efficacies in diets' rather than that of 'Perceived benefits in diets'. The important factor that affects 'Health promotion behaviors in exercises' was 'Self-efficacies in exercises' rather than that of 'Perceived benefits in exercises'.

  • PDF

Comparative Study of the Difference in Behavior of the Accessory Gene Regulator (Agr) in USA300 and USA400 Community-Associated Methicillin-Resistant Staphylococcus aureus (CA-MRSA)

  • Lee, Hye Soo;Song, Hun-Suk;Lee, Hong-Ju;Kim, Sang Hyun;Suh, Min Ju;Cho, Jang Yeon;Ham, Sion;Kim, Yun-Gon;Joo, Hwang-Soo;Kim, Wooseong;Lee, Sang Ho;Yoo, Dongwon;Bhatia, Shashi Kant;Yang, Yung-Hun
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.8
    • /
    • pp.1060-1068
    • /
    • 2021
  • Community-associated Methicillin-Resistant Staphylococcus aureus (CA-MRSA) is notorious as a leading cause of soft tissue infections. Despite several studies on the Agr regulator, the mechanisms of action of Agr on the virulence factors in different strains are still unknown. To reveal the role of Agr in different CA-MRSA, we investigated the LACΔagr mutant and the MW2Δagr mutant by comparing LAC (USA300), MW2 (USA400), and Δagr mutants. The changes of Δagr mutants in sensitivity to oxacillin and several virulence factors such as biofilm formation, pigmentation, motility, and membrane properties were monitored. LACΔagr and MW2Δagr mutants showed different oxacillin sensitivity and biofilm formation compared to the LAC and MW2 strains. Regardless of the strain, the motility was reduced in Δagr mutants. And there was an increase in the long chain fatty acid in phospholipid fatty acid composition of Δagr mutants. Other properties such as biofilm formation, pigmentation, motility, and membrane properties were different in both Δagr mutants. The Agr regulator may have a common role like the control of motility and straindependent roles such as antibiotic resistance, biofilm formation, change of membrane, and pigment production. It does not seem easy to control all MRSA by targeting the Agr regulator only as it showed strain-dependent behaviors.

Numerical Modeling of Combustion Processes and Pollutant Formations in Direct-Injection Diesel Engines

  • Kim, Yong-Mo;Lee, Joon-Kyu;Ahn, Jae-Hyun;Kim, Seong-Ku
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.7
    • /
    • pp.1009-1018
    • /
    • 2002
  • The Representative Interactive Flamelet (RIF) concept has been applied to numerically simulate the combustion processes and pollutant formation in the direct injection diesel engine. Due to the ability for interactively describing the transient behaviors of local flame structures with CFD solver, the RIF concept has the capabilities to predict the auto-ignition and subsequent flame propagation in the diesel engine combustion chamber as well as to effectively account for the detailed mechanisms of soot formation, NOx formation including thermal NO path, prompt and nitrous 70x formation, and reburning process. Special emphasis is given to the turbulent combustion model which properly accounts for vaporization effects on the mixture fraction fluctuations and the pdf model. The results of numerical modeling using the RIF concept are compared with experimental data and with numerical results of the commonly applied procedure which the low-temperature and high-temperature oxidation processes are represented by the Shell ignition model and the eddy dissipation model, respectively. Numerical results indicate that the RIF approach including the vaporization effect on turbulent spray combustion process successfully predicts the ignition delay time and location as well as the pollutant formation.