• Title/Summary/Keyword: formation and stabilization

Search Result 204, Processing Time 0.026 seconds

Effect of Grain Size and Heat-treating Atmosphere on the Phase Stability of Y-TZP (입자크기와 열처리 분위기 변화에 따른 Y-TZP에서의 상안정성 변화)

  • Chung, Tai-Joo;Ahn, Seung-Su;Song, Eun-Wha;Oh, Kyung-Sik;Lee, Jong-Sook;Kim, Young-Sik
    • Journal of Powder Materials
    • /
    • v.13 no.5 s.58
    • /
    • pp.360-365
    • /
    • 2006
  • The phase stability of tetragonal phase in Y-TZP was investigated in terms of the distribution of grain sizes and heat-treating atmosphere. Y-TZP with various grain sizes were prepared using duration time at $1600^{\circ}C$ as experimental parameter. Accumulated grain size distributions were built from the SEM micrographs and the amount of tetragonal phase were measured using XRD. Both results were compared to determine the critical grain size before and after heat-treatment in vacuum. The critical grain size drastically decreased compared with the small increase of average grain size due to the autocatalytic effect which critically affects the tetragonal to monoclinic phase transformation. After heat-treatment in reductive atmosphere critical grain size relatively increased due to the stabilization of tetragonal phase. The formation of oxygen vacancies during heat-treatment was ascribed to the increase of stability.

Cytotoxic Activity of Biosynthesized Gold Nanoparticles with an Extract of the Red Seaweed Corallina officinalis on the MCF-7 Human Breast Cancer Cell Line

  • El-Kassas, Hala Yassin;El-Sheekh, Mostafa M.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.10
    • /
    • pp.4311-4317
    • /
    • 2014
  • Background: Nano-biotechnology is recognized as offering revolutionary changes in the field of cancer therapy and biologically synthesized gold nanoparticles are known to have a wide range of medical applications. Materials and Methods: Gold nanoparticles (GNPs) were biosynthesized with an aqueous extract of the red alga Corallina officinalis, used as a reducing and stabilizing agent. GNPs were characterized using UV-Vis spectroscopy, transmission electron microscopy (TEM), energy dispersive analysis (EDX) and Fourier transform infra-red (FT-IR) spectroscopy and tested for cytotoxic activity against human breast cancer (MCF-7) cells cultured in Dulbecco's modified Eagle medium supplemented with 10% fetal bovine serum, considering their cytotoxicty and effects on cellular DNA. Results: The biosynthesized GNPs were $14.6{\pm}1nm$ in diameter. FT-IR analysis showed that the hydroxyl functional group from polyphenols and carbonyl group from proteins could assist in formation and stabilization. The GNPs showed potent cytotoxic activity against MCF-7 cells, causing necrosis at high concentrations while lower concentrations were without effect as indicated by DNA fragmentation assay. Conclusions: The antitumor activity of the biosynthesized GNPs from the red alga Corallina officinalis against human breast cancer cells may be due to the cytotoxic effects of the gold nanoparticles and the polyphenolcontent of the algal extract.

Fabrication of High Strength Mg-Li-Al Alloys by Squeeze Casting Process (용탕단조법에 의한 고강도 Mg-Li-Al합금 제조)

  • Han, Chang-Hwa;Hwang, Yong-Ha;Kim, Yong-Woo;Kim, Do-Hyang;Hong, Chun-Pyo
    • Journal of Korea Foundry Society
    • /
    • v.17 no.3
    • /
    • pp.267-275
    • /
    • 1997
  • Fabrication of high strength Mg-Li-Al alloys by squeeze casting was established by the stabilization of melt and mold temperatures, applied pressure and the refining method. The entrapment of inclusions during pouring was prevented using 30 ppi alumina foam filter. The as-cast microstructure consists of a mixture of ${\alpha}$ and ${\beta}$ phases including AILi and $MgLi_2$, Al particles, which are distributed in the ${\beta}$ matrix. The grain sizes of gravity and squeeze casting alloys were 288 ${\mu}m$ and 207 ${\mu}m$ respectively. The addition of Al in Mg-Li alloys promoted the formation of second phase particles, which were adjusted to optimize the properties of Mg-Li-Al alloys. The Mg-10wt%Li-5wt%Al alloy after heat treatment at $350^{\circ}C$ for 1 hour showed the maximum hardness value. This is due to the facts that the amounts of ${\alpha}$ and ${\beta}$ phases and their distributions are dependent upon the solution treatment temperature, and that the amounts of AILi and $MgLi_2Al$ particles are dependent upon the Al content.

  • PDF

Soil water retention and vegetation survivability improvement using microbial biopolymers in drylands

  • Tran, An Thi Phuong;Chang, Ilhan;Cho, Gye-Chun
    • Geomechanics and Engineering
    • /
    • v.17 no.5
    • /
    • pp.475-483
    • /
    • 2019
  • Vegetation cover plays a vital role in stabilizing the soil structure, thereby contributing to surface erosion control. Surface vegetation acts as a shelterbelt that controls the flow velocity and reduces the kinetic energy of the water near the soil surface, whereas vegetation roots reinforce the soil via the formation of root-particle interactions that reduce particle detachment. In this study, two vegetation-testing trials were conducted. The first trial was held on cool-season turfgrasses seeded in a biopolymer-treated site soil in an open greenhouse. At the end of the test, the most suitable grass type was suggested for the second vegetation test, which was conducted in an environmental control chamber. In the second test, biopolymers, namely, starch and xanthan gum hydrogels (pure starch, pure xanthan gum, and xanthan gum-starch mixtures), were tested as soil conditioners for improving the water-holding capacity and vegetation growth in sandy soils. The results support the possibility that biopolymer treatments may enhance the survival rate of vegetation under severe drought environments, which could be applicable for soil stabilization in arid and semiarid regions.

Brass fillers in friction composite materials: Tribological and brake squeal characterization for suitable effect evaluation

  • Kchaou, Mohamed;Sellami, Amira;Abu Bakar, Abd. Rahim;Lazim, Ahmad Razimi Mat;Elleuch, Riadh;Kumar, Senthil
    • Steel and Composite Structures
    • /
    • v.19 no.4
    • /
    • pp.939-952
    • /
    • 2015
  • In this paper, brake pad performance of two organic matrix composites namely, Sample 1 (contains no brass filler) and Sample 2 (contains 1.5% brass filler), is studied based on tribological and squeal noise behavior. In the first stage, a pin-on-disc tribometer is used to evaluate the frictional behavior of the two pads. On the following stage, these pads are tested on squeal noise occurrence using a drag-type brake dynamometer. From the two type of tests, the results show that; (i) brass fillers play a dual role; firstly as reinforcing element of the brake pad providing primary contact sites, and secondly as solid lubricant by contributing to the formation of a layer of granular material providing velocity accommodation between the pad and the disc; (ii) brass fillers contribute to friction force stabilization and smooth sliding behavior; (iii) the presence of small weight quantity of brass filler strongly contributes to squeal occurrences; (iv) there is close correlation between pin-on-disc tribometer and brake dynamometer tests in terms of tribological aspect.

CO2 sequestration and heavy metal stabilization by carbonation process in bottom ash samples from coal power plant

  • Ramakrishna., CH;Thriveni., T;Nam, Seong Young;kim, Chunsik;Ahn, Ji Whan
    • Journal of Energy Engineering
    • /
    • v.26 no.4
    • /
    • pp.74-83
    • /
    • 2017
  • Coal-fired power plants supply roughly 50 percent of the nation's electricity but produce a disproportionate share of electric utility-related air pollution. Coal combustion technology can facilitate volume reduction of up to 90%, with the inorganic contaminants being captured in furnace bottom ash and fly ash residues. These disposal coal ash residues are however governed by the potential release of constituent contaminants into the environment. Accelerated carbonation process has been shown to have a potential for improving the chemical stability and leaching behavior of bottom ash residues. The aim of this work was to quantify the volume of $CO_2$ that could be sequestrated with a view to reducing greenhouse gas emissions and stabilize the contaminated heavy metals from bottom ash samples. In this study, we used PC boiler bottom ash, Kanvera reactor (KR) slag and calcined waste lime for measuring chemical analysis and heavy metals leaching tests were performed and also the formation of calcite resulting from accelerated carbonation process was investigated by thermo gravimetric and differential thermal analysis (TG/DTA).

A study on the efficacy of low viscous nanosized biopolymer on the mechanical and hydraulic properties of organic silt

  • Govindarajan Kannan;Evangelin Ramani Sujatha
    • Geomechanics and Engineering
    • /
    • v.34 no.3
    • /
    • pp.221-231
    • /
    • 2023
  • Biopolymer stabilization is a sustainable alternative to traditional techniques that cause a lesser negative impact on the environment during production and application. The study aims to minimize the biopolymer dosages by sizing the bio-additives to the nanoscale. This study combines the advantages of bio and nanomaterials in geotechnical engineering applications and attempts to investigate the behaviour of a low viscous biopolymer, nano sodium carboxymethyl cellulose (nCMC), to treat organic soil. Soil is treated with 0.25%, 0.50%, 0.75% and 1.00% of nano-bio additive, and its effect on the plastic behaviour, compaction characteristics, strength, hydraulic conductivity (HC) and compressible nature are investigated. The strength increased by 1.68 times after 90 days of curing at a dosage of 0.5% nCMC through the formation of gel threads connecting the soil particles that stiffened the matrix. The viscosity of 1% nCMC increased exponentially, deterring fluid flow through the voids and reduced the HC by 0.85 times after curing for 90 days. Also, beyond the optimum dosage of 0.50%, the nCMC forms a film around the soil particles that inhibits the inter-particle cohesion causing a reduction in strength. Experimental results show that nCMC can effectively substitute conventional additives to stabilize the soil.

Novel Therapeutic Approach toward Inflammatory Diseases: Targeting Transglutaminase 2

  • Kim Soo-Youl;Kim Hong-Yeoul;Lee Jae-Dong
    • The Journal of Korean Medicine
    • /
    • v.25 no.4
    • /
    • pp.188-199
    • /
    • 2004
  • Transglutaminase 2 (TGase 2) is an enzyme that is widely used in many biological systems for generic tissue stabilization purposes or immediate defenses for wounds. Many reports have showed that TGase 2 is aberrantly activated in tissues and cells and contributes to a variety of diseases, including neurodegenerative diseases and autoimmune diseases. In most cases, the TGase 2 appears to be a factor in the formation of inappropriate proteinaceous aggregates that may be cytotoxic. However, in other cases such as celiac disease, arthritis, lupus, amyotrophic lateral sclerosis, TGase 2 is involved in the generation of autoantibodies. This suggests the possibility that the inappropriate expression and/or presentation of TGase 2 to T cells might contribute to these diseases in genetically predisposed individuals. Others and we have found that TGase 2 expression is also increased in the inflammation process. We also demonstrated reverse of inflammation by TGase inhibition. Furthermore we discovered the genuine role of TGase 2 in immune cell activation. Increase of TGase activity induces or exacerbates inflammation via NF-κB activation without I-κBα kinase signalings. This review will examine a possibility of TGase inhibitors as therapeutic agents in a variety of inflammatory diseases.

  • PDF

Lean burn Combustion Characteristics of Direct Injection Gasoline Engine with Swirl Control Valve (스월 제어 밸브를 적용한 직접분사식 가솔린 엔진의 희박연소 특성)

  • Lee, Min-Ho;Moon, Hak-Hoon;Cha, Kyung-Ok
    • Journal of ILASS-Korea
    • /
    • v.9 no.2
    • /
    • pp.9-17
    • /
    • 2004
  • The performance characteristics of lean burn system in gasoline engine are mainly affected by the air-fuel mixture in cylinder, gas exchange process of manifold system, exhaust emission of engine, and the electronic engine control system. In order to obtain the effect of performance factors on the optimum conditions of lean burn engine, this study deal with the behavior of mixture formation, gas flow characteristics of air, flow and evaporation analysis of spray droplet in cylinder, vaporization and burning characteristics of lean mixture in the engine, and the control performance of electronic engine control system. The optimum flow conditions were investigated with the swirl and tumble flows in the combustion chamber with swirl control valve. The performance characteristics and optimum condition of flow field in intake system were analyzed by the investigation of inlet flow of air and combustion stabilization on cylinder.

  • PDF

A study on the Effect of Refractory Materials Composition and Slurry pH on the Reaction between Investment Casting Mold and Molten Ti (Ti 용탕과 정밀주조용 주형 간의 반응에 미치는 내화재료 조성 및 슬러리 pH의 영향에 관한 연구)

  • Shin, Jae-Oh;Kim, Won-Yong;Kim, Mok-Soon
    • Journal of Korea Foundry Society
    • /
    • v.28 no.6
    • /
    • pp.282-287
    • /
    • 2008
  • The effect of CaO mold on the formation of reaction layer was investigated. CaO mold was prepared by mixing of Colloidal silica($NALCO^{(R)}$ 1130) and an $ZrO_2$, CaO at room temperature. The dried at $20{\pm}3^{\circ}C$, 75% humidity for 12hrs. Sample was prepared from the Cp-Ti(grade-2) and melted by high frequence induction melting system in the vacuum condition. The react ion layer of Ti was confirmed by optical microscopy, microhardness(Hv) and X-ray diffraction. Thickness of reaction layer using the CaO stabilized ZrO2 was thinner than the CaO added ZrO2. And thickness of reaction layer were decreased with decreasing pH of slurry. CaO addition in the slurry could not controlled reaction between molten Ti and investment mold. On the other hand, the CaO chemical bonded ZrO2 by stabilization treatment could controlled reaction between molten Ti and investment mold.