• 제목/요약/키워드: formation: Galaxy

검색결과 446건 처리시간 0.024초

Star-gas misalignment in Horizon-AGN simulation

  • Khim, Donghyeon J.;Yi, Sukyoung K.
    • 천문학회보
    • /
    • 제44권1호
    • /
    • pp.74.3-75
    • /
    • 2019
  • Recent Integral Field Spectroscopy (IFS) studies revealed that not only late type galaxies (LTGs) but also early type galaxies (ETGs) have various kinds of kinematic rotation. (e.g. not clearly detectable rotation, disk-like rotation, kinematically distinct core (Cappellari 06)) Among the various studies about galactic kinematics, one of the most notable anomalies is the star-gas misalignment. The gas forms stars and stars release gas through mass-loss. In this process, their angular momentum is conserved. Therefore, kinematic decoupling between stars and gas can occur due to external gas inflow or perturbation of components. There are some possible origins of misalignment: cold gas from filaments, hot gas from outer halo, interaction or merging events with galaxies and environmental effects. Misalignment, the black box from mixture of internal and external gas, can be an important keyword for understanding further about galaxies' kinematics and external processes. Using both SAMI IFS data(Sydney-AAO Multi-object Integral field spectrograph Galaxy Survey, Croom+12) and Horizon-AGN simulation(Dubois+14), we examined misaligned galaxies properties and distribution. Because the simulation has lots of galaxies at various z, we were able to study history of formation, evolution and extinction of misalignment, which was hard to be done with observation only.

  • PDF

The relationship of dense molecular gas and HI/H2 gas in a MALATANG galaxy, NGC 6946

  • Poojon, Panomporn;Chung, Aeree;Lee, Bumhyun;Oh, Se-Heon;Tan, Qing-Hua;Gao, Yu;Sengupta, Chandreyee
    • 천문학회보
    • /
    • 제44권1호
    • /
    • pp.76.3-76.3
    • /
    • 2019
  • We present the results from our comparisons of HCN and HCO+ (J=4-3) with HI and $H_2$ gas in NGC 6946, a sample from a mapping study of the dense molecular gas in the strongest star-forming galaxies (MALATANG). The MALATANG is one of the JCMT legacy surveys on the nearest 23 IR-brightest galaxies beyond the Local Group, which aims to study the relations of dense molecular gas with more general cool gas such as atomic and molecular hydrogen gas, and star formation properties in active galaxies. In this work, we particularly focus on the comparisons between the JCMT HCN/HCO+ (J=4-3) data and the THINGS HI/the NRO CO (J=1-0) data. We probe the dense molecular gas mass as a function of HI and $H_2$ mass in different locations in the central ${\sim}1.5kpc^2$ region. We discuss how the excess/deficit of $HI/H_2$ or total cool gas ($HI+H_2$) mass controls the presence and/or the fraction of dense molecular gas.

  • PDF

Spiral Arm Features in Disk Galaxies: A Density-Wave Theory

  • Kim, Yonghwi;Ho, Luis C.
    • 천문학회보
    • /
    • 제44권1호
    • /
    • pp.34.2-34.2
    • /
    • 2019
  • Several observational results show a tighter pitch angle at wavelengths of optical and near-infrared than those that are associated with star formation, which is in agreement with the prediction of the density wave theory. In my recent numerical studies, the dependence of the shock positions relative to the potential minima is due to the tendency that stronger shocks form farther downstream. This causes a systematic variation of the perpendicular Mach number, with radius and makes the pitch angle of the gaseous arms smaller than that of the stellar arms, which supports the prediction of the density-wave theory, independently. However, some observations still give controversial results which show similar pitch angles at wavelengths, and there is no statistical study comparing observations and numerical models directly. By analyzing optical image of disk galaxies in the Carnegie-Irvine Galaxy Survey (CGS), I measured the physical values of stellar and gaseous arms such as their strength, length, and pitch angles. For direct comparison with numerical results, I analyzed more than 30 additional numerical models with varying the initial parameters in model galaxies. In this talk, I will present results both of observational and numerical samples and discuss the physical properties of spiral structures based on the density-wave theory.

  • PDF

DIFFUSIVE SHOCK ACCELERATION BY MULTIPLE WEAK SHOCKS

  • Kang, Hyesung
    • 천문학회지
    • /
    • 제54권3호
    • /
    • pp.103-112
    • /
    • 2021
  • The intracluster medium (ICM) is expected to experience on average about three passages of weak shocks with low sonic Mach numbers, M ≲ 3, during the formation of galaxy clusters. Both protons and electrons could be accelerated to become high energy cosmic rays (CRs) at such ICM shocks via diffusive shock acceleration (DSA). We examine the effects of DSA by multiple shocks on the spectrum of accelerated CRs by including in situ injection/acceleration at each shock, followed by repeated re-acceleration at successive shocks in the test-particle regime. For simplicity, the accelerated particles are assumed to undergo adiabatic decompression without energy loss and escape from the system, before they encounter subsequent shocks. We show that in general the CR spectrum is flattened by multiple shock passages, compared to a single episode of DSA, and that the acceleration efficiency increases with successive shock passages. However, the decompression due to the expansion of shocks into the cluster outskirts may reduce the amplification and flattening of the CR spectrum by multiple shock passages. The final CR spectrum behind the last shock is determined by the accumulated effects of repeated re-acceleration by all previous shocks, but it is relatively insensitive to the ordering of the shock Mach numbers. Thus multiple passages of shocks may cause the slope of the CR spectrum to deviate from the canonical DSA power-law slope of the current shock.

HI superprofiles of galaxies from THINGS and LITTLE THINGS

  • Kim, Minsu;Oh, Se-Heon
    • 천문학회보
    • /
    • 제46권2호
    • /
    • pp.68.3-69
    • /
    • 2021
  • We present a novel profile stacking technique based on optimal profile decomposition of a 3D spectral line data cube, and its performance test using the HI data cubes of sample galaxies from HI galaxy surveys, THINGS and LITTLE THINGS. Compared to the previous approach which aligns all the spectra of a cube using their central velocities derived from either moment analysis, single Gaussian or hermite h3 polynomial fitting, the new method makes a profile decomposition of the profiles from which an optimal number of single Gaussian components is derived for each profile. The so-called superprofile which is derived by co-adding all the aligned profiles from which the other Gaussian models are subtracted is found to have weaker wings compared to the ones constructed in a typical manner. This could be due to the reduced number of asymmetric profiles in the new method. A practical test made on the HI data cubes of the THINGS and LITTLE THINGS galaxies shows that our new method can extract more mass of kinematically cold HI components in the galaxies than the previous results. Additionally, we fit a double Gaussian model to the superprofiles whose S/N is boosted, and quantify not only their profile shapes but derive the ratio of the Gaussian model parameters, such as the intensity ratio and velocity dispersion ratio of the narrower and broader Gaussian components. We discuss how the superprofile properties of the sample galaxies are correlated with their other physical properties, including star formation rate, stellar mass, metallicity, and gas mass.

  • PDF

Giant Molecular Cloud Properties of WISDOM galaxies - NGC 5806 and NGC 6753

  • Choi, Woorak;Liu, Lijie;Bureau, Martin;Davis, Timothy;Chung, Aeree
    • 천문학회보
    • /
    • 제46권1호
    • /
    • pp.56.2-56.2
    • /
    • 2021
  • Constraining the structure and thus the fate of giant molecular clouds (GMCs), the primary sites of star formation in galaxies, is crucial to understand the evolution of galaxies themselves. Exploiting the unprecedented sensitivity and angular resolution of the Atacama Large Millimeter/sub-millimeter Array (ALMA), we have measured the spatially-resolved (~ 20 pc resolution) properties of the GMCs in two nearby late-type galaxies, NGC 5806 (SAB(s)b) and NGC 6753 ((R)SA(r)b), as part of the WISDOM project. Although these results are preliminary, we identified ~ 200 resolved GMCs in NGC 5806 within a radius of 500 pc, most within a nuclear ring structure, and ~ 400 resolved GMCs in NGC 6753 within a radius of 2 kpc, most within a flocculent spiral structure. The GMCs of NGC 5806 have similar sizes but slightly higher linewidths than clouds in the Milky Way disc. Because the GMCs also have higher surface densities, the calculated cloud Virial parameters are nevertheless about unity, suggesting that the GMCs of NGC 5806 are in gravitational equilibrium and thus long lived. This is contrary to other WISDOM results on earlier-type galaxies, where large cloud linewidths are likely due to shear associated with the local (circular) orbital motions (rather than the clouds' self-gravity), and the clouds are either marginally or not gravitationally bound. These results support the notion that spheroids alter the dynamical states of clouds (morphological quenching), that are otherwise (i.e. in galaxy discs) fairly homogenous and similar to those of the Milky Way.

  • PDF

A Model for Diffusive Shock Acceleration of Protons in Intracluster Shocks and Gamma-ray and Neutrino Emissions from Clusters of Galaxies

  • Ha, Ji-Hoon;Ryu, Dongsu;Kang, Hyesung
    • 천문학회보
    • /
    • 제44권2호
    • /
    • pp.54.3-54.3
    • /
    • 2019
  • During the formation of large-scale structures in the universe, shocks with the sonic Mach number Ms <~ 5 are naturally induced by supersonic flow motions of baryonic matter in the intracluster medium (ICM). Cosmic rays (CRs) are expected to be accelerated via diffusive shock acceleration (DSA) at these ICM shocks, although the existence of CR protons in the ICM remains to be confirmed through gamma-ray observations. Based on the results obtained from kinetic plasma simulations, we build an analytic DSA model for weak, quasi-parallel shocks in the test-particle regime. With our DSA model, the CR acceleration efficiency ranges ~ 0.001 - 0.02 in supercritical quasi-parallel shocks with sonic Mach number Ms ~ 2.25 - 5, and the acceleration would be negligible in subcritical shocks wth Ms <~ 2.25. Adopting our DSA model, we estimate gamma-ray and neutrino emissions from clusters of galaxies by performing cosmological hydrodynamic simulations. The estimated gamma-ray flux is below the Fermi-LAT upper limit. In addition, the possible neutrino emission due to the decay of charged pions in galaxy clusters would be about <~ 1% of the atmospheric neutrino intensity in the energy range of <~ 100 GeV. In this talk, we will discuss the implication of our results.

  • PDF

A Survey of Globular Cluster Systems of Massive Compact Elliptical Galaxies in the Local Universe

  • 강지수;이명균
    • 천문학회보
    • /
    • 제45권1호
    • /
    • pp.32.2-32.2
    • /
    • 2020
  • Massive Compact Elliptical Galaxies (MCEGs) found in the local universe are as massive as normal galaxies but extremely compact (M∗ > 1011 Msun, Reff < 1.5 kpc). They are considered to be the relics of red nugget galaxies found at high redshift. They are not likely to have undergone many mergers, keeping their original mass and size. Moreover, it is expected that they host a dominant population of red (metal-rich) globular clusters rather than blue (metal-poor) ones. Indeed, Beasley et al. (2018) found that the color distribution of the cluster system of NGC 1277 is unimodal, showing only a red population. However, NGC 1277 is the only case whose cluster system was studied among MCEGs. In this study, we investigate globular cluster systems of 14 nearby MCEGs with a homogeneous data set of HST/WFC3 F814W/F160W archive images. We detect tens to hundreds of globular clusters in each galaxy and examine their color distributions. Surprisingly, the fractions of red globular clusters are similar to those of normal galaxies, and are much lower than that of NGC 1277. We additionally obtain Gemini/GMOS-N g'r'i' images of PGC 70520, one of the 14 nearby MCEGs, to detect more globular clusters from deeper and wider images. We will discuss the results from the Gemini data combined with the results from the HST data in relation with the formation of MCEGs.

  • PDF

Globular Clusters in the NGC 4839 Group Merging with Coma: What Do They Tell about the Group History?

  • O, Seong-A;Lee, Myung Gyoon
    • 천문학회보
    • /
    • 제46권1호
    • /
    • pp.54.3-54.3
    • /
    • 2021
  • The Coma cluster serves as an ideal laboratory to study the cluster assembly history. It is known as a typical example of relaxed galaxy clusters. However, recent X-ray, radio and optical observations revealed a number of substructures in Coma. The NGC 4839 group is an interesting substucture in the sense that it is overlappled with the X-ray bright component in the south-west region. Recent hydrodynamical simulations in the literature suggest that the NGC 4839 group came from the north-east direction of Coma, passed the apocenter about 1 Gyr ago, and started a second infall to the Coma core recently. Interestingly a number of E+A galaxies are located along the filament connecting the NGC 4839 group and the Coma core. We are surveying a wide area covering the NGC 4839 group to search for globular clusters and use them to investigate any connection between the globular clusters and the merger scenario of the NGC 4839 group. We utilized Subaru Hyper Suprime-Cam archival images of two circular fields with diameter ~1.8 deg, covering the Coma core and the NGC 4839 group. We discuss the results with regard to the formation history of the NGC 4839 group.

  • PDF

최근 천문학 연구 키워드와 천체 분야 교육과정 내용 요소 비교 분석 (A Comparative Analysis of Keywords in Astronomical Journals and Concepts in Secondary School Astronomy Curriculum)

  • 신현정;권우진;가석현
    • 한국과학교육학회지
    • /
    • 제42권2호
    • /
    • pp.289-309
    • /
    • 2022
  • 힉스입자 발견, 블랙홀 이미지 촬영, 외계행성 탐사, 깊은 우주탐사, 중력파 관측 등 최근 천문학은 매우 빠르게 성장하고 있으며, 학생들도 상대적으로 흥미가 높은 분야이다. 본 연구의 목적은 최근 10년간 천문학 연구 저널에서 높은 빈도로 등장한 키워드들과 중고등학교 과학 교육과정에 포함된 천문학 내용 요소를 7개 영역별로 비교하여 천문학 교육과정 개선에 대한 시사점을 얻는 것이다. 우선 선정된 4개 저널-ApJ, ApJL, A&A, MNRAS-에 2011년부터 2020년까지 게재된 모든 논문의 키워드를 R 패키지로 수집하여 연구 동향을 살펴보았다. 교육과정 내용 요소는 7학년부터 12학년 학생이 배우는 과목 중 천문학 내용 요소가 포함된 6개 과목(과학, 통합과학, 지구과학I, 지구과학II, 물리II, 융합과학)의 2015 개정 교육과정 문서에 제시된 내용 체계표, 성취기준, 성취기준해설을 현직 교사들이 코딩한 결과를 종합하여 추출하였다. 연구 결과는 다음과 같다. 첫째, 천문학에서 꾸준하게 많이 등장하는 키워드는 'galaxies: formation, galaxies: active, star: formation, accretion, accretion discs, method: numerical'이다. 둘째, 천문학 교육과정은 모든 학생이 배우는 공통 과학 과목 안에서 'High Energy Astrophysical Phenomena' 영역을 제외한 모든 영역을 포함하도록 구성되었으나 키워드 수준에서 보면 과목별, 학년별 내용 요소 배치와 새롭게 도입할 만한 주제에 대한 검토가 필요한 것으로 나타났다. 본 연구는 과목의 근간을 이루는 과학연구 분야와 교육과정을 비교한 탐색적 연구로서, 연구 결과는 향후 천문학 교육과정 개정에 시사점을 줄 수 있는 기초 연구가 되길 기대한다.