• 제목/요약/키워드: formalin test

검색결과 170건 처리시간 0.02초

정천화담강기탕(定喘化痰降氣湯)이 formalin으로 유발된 마우스의 만성 염증에 미치는 영향 (Anti-inflammatory Effect of Jungcheonhwadamgangki-tang in Formalin-Injection Mouse Paw Chronic Inflammation Model)

  • 신창호;박미연;최해윤;김종대
    • 동의생리병리학회지
    • /
    • 제21권6호
    • /
    • pp.1470-1476
    • /
    • 2007
  • In the present study, the anti-inflammatory effect of Jungcheonhwadamgangki-tang(定喘化痰降氣湯) water extract was tested in formalin-injection mouse hind paw chronic inflammation model. The test articles were dosed once a day for 10 days, and changes on the body weight, paw weights were observed with histopathology of induced paw dorsum pedis. In addition, histomorphometry was also monitored at sacrifice. The increases of absolute and relative hind paw weight detected in vehicle control compared to that of sham, were significantly and dose-dependently inhibited by Jungcheonhwadamgangki-tang in the present study. A classic acute inflammatory histological changes such as subcutaneous edema, hypertrophy and infiltration of inflammatory cells, was detected in vehicle control. However, these histological changes were significantly and dose-dependently inhibited by Jungcheonhwadamgangki-tang. In addition, the increases of hind paw weight detected in the vehicle control, were also dose-dependently decreased in the all Jungcheonhwadamgangki-tang-dosing groups. Base on these aforementioned results, it is concluded that Jungcheonhwadamgangki-tang have clear anti-inflammatory effect on the chronic inflammation induced by formalin-injection.

Antinociceptive Effect of the Intrathecal Phosphodiesterase Inhibitor, Zaprinast, in a Rat Formalin Test

  • Heo, Burn Young;Kim, Chang Mo;Jeong, Sung Tae;Kim, Seok Jai;Choi, Jeong II;Yoon, Myung Ha
    • The Korean Journal of Pain
    • /
    • 제18권2호
    • /
    • pp.99-106
    • /
    • 2005
  • Background: Cyclic guanosine monophosphate (cGMP) and opioid receptors are involved in the modulation of nociception. Although the opioid receptors agonists are active in pain, the effect of an phospodiesterase inhibitor (zaprinast) for increasing the level of cGMP has not been thoroughly investigated at the spinal level. This study examined the effects of intrathecal zaprinast and morphine in a nociceptive test and we also examined the nature of the pharmacological interaction after the coadministration of zaprinast with morphine. The role of the nitric oxide (NO)-cGMP-potassium channel pathway on the effect of zaprinast was further clarified. Methods: Catheters were inserted into the intrathecal space of male SD rats. For the induction of pain, $50{\mu}l$ of 5% formalin solution was applied to the hindpaw. Isobolographic analysis was used for the evaluation of the drug interaction between zaprinast and morphine. Furthermore, NO synthase inhibitor ($_L-NMMA$), guanylyl cyclase inhibitor (ODQ) or a potassium channel blocker (glibenclamide) were intrathecally administered to verify the involvement of the NO-cGMP- potassium channel pathway on the antinociception effect of zaprinast. Results: Both zaprinast and morphine produced an antinociceptive effect during phase 1 and phase 2 in the formalin test. Isobolographic analysis revealed a synergistic interaction after the intrathecal administration of the zaprinast-morphine mixture in both phases. Intrathecal $_L-NMMA$, ODQ and glibenclamide did not reverse the antinociception of zaprinast in either phase. Conclusions: These results suggest that zaprinast, morphine and the mixture of the two drugs are effective against acute pain and they facilitated pain state at the spinal level. Thus, the spinal combination of zaprinast with morphine may be useful for the management of pain. However, the NO-sensitive cGMP-potassium channel pathway did not contribute to the antinocieptive mechanism of zaprinast in the spinal cord.

The Role of Spinal Dopaminergic Transmission in the Analgesic Effect of Nefopam on Rat Inflammatory Pain

  • Kim, Do Yun;Chae, Joo Wung;Lim, Chang Hun;Heo, Bong Ha;Park, Keun Suk;Lee, Hyung Gon;Choi, Jeong Il;Yoon, Myung Ha;Kim, Woong Mo
    • The Korean Journal of Pain
    • /
    • 제29권3호
    • /
    • pp.164-171
    • /
    • 2016
  • Background: Nefopam has been known as an inhibitor of the reuptake of monoamines, and the noradrenergic and/or serotonergic system has been focused on as a mechanism of its analgesic action. Here we investigated the role of the spinal dopaminergic neurotransmission in the antinociceptive effect of nefopam administered intravenously or intrathecally. Methods: The effects of intravenously and intrathecally administered nefopam were examined using the rat formalin test. Then we performed a microdialysis study to confirm the change of extracellular dopamine concentration in the spinal dorsal horn by nefopam. To determine whether the changes of dopamine level are associated with the nefopam analgesia, its mechanism was investigated pharmacologically via pretreatment with sulpiride, a dopaminergic D2 receptor antagonist. Results: When nefopam was administered intravenously the flinching responses in phase I of the formalin test were decreased, but not those in phase II of the formalin test were decreased. Intrathecally injected nefopam reduced the flinching responses in both phases of the formalin test in a dose dependent manner. Microdialysis study revealed a significant increase of the level of dopamine in the spinal cord by intrathecally administered nefopam (about 3.8 fold the baseline value) but not by that administered intravenously. The analgesic effects of intrathecally injected nefopam were not affected by pretreatment with sulpiride, and neither were those of the intravenous nefopam. Conclusions: Both the intravenously and intrathecally administered nefopam effectively relieved inflammatory pain in rats. Nefopam may act as an inhibitor of dopamine reuptake when delivered into the spinal cord. However, the analgesic mechanism of nefopam may not involve the dopaminergic transmission at the spinal level.

넙치에 대한 b-용혈성 연쇄구균 불활화백신의 안정성과 효능 (Stability and efficacy of formalin-killed Streptococcus iniae vaccine for olive flounder, Paralichthys olivaceus)

  • 조미영;이덕찬;김진우;도정완;이주석;김명석;최미영;김이청;강보규;윤용득
    • 한국어병학회지
    • /
    • 제19권2호
    • /
    • pp.165-172
    • /
    • 2006
  • 본 연구는 Streptococcus iniae 포르말린 불활화 백신을 냉장 보관한 후 보존 기간별로 넙치에 접종하여 면역 효능 및 안정성을 조사하였다. 그 결과 6, 12, 15개월 보존한 후에도 면역 효능의 감소가 확인되지 않아 백신으로서의 높은 안정성을 확인할 수 있었다. 또한, 1회 접종구에 비해 2회 접종구에서 높은 항체가가 유도되었으며 방어력도 증가하는 것으로 나타났다. 특히, 1회 접종만으로도 낮은 항체가에도 불구하고 60% 이상의 방어 효과가 나타남에 따라 항체 이외의 세포성 면역이 방어력 형성에서 중요한 역할을 하는 것으로 추정되었다.

Preventing Extracellular Diffusion of Trigeminal Nitric Oxide Enhances Formalin-induced Orofacial Pain

  • Jung, Hwi-Seok;Jeon, Hong-Bin;Jeon, Ik-Sung;Lee, Bum-Jun;Yoo, Hyun-Woo;Ahn, Dong-Kuk;Youn, Dong-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제13권5호
    • /
    • pp.379-383
    • /
    • 2009
  • Nitric oxide (NO), a diffusible gas, is produced in the central nervous system, including the spinal cord dorsal horn and the trigeminal nucleus, the first central areas processing nociceptive information from periphery. In the spinal cord, it has been demonstrated that NO acts as pronociceptive or antinociceptive mediators, apparently in a concentration-dependent manner. However, the central role of NO in the trigeminal nucleus remains uncertain in support of processing the orofacial nociception. Thus, we here investigated the central role of NO in formalin (3%)-induced orofacial pain in rats by administering membrane-permeable or -impermeable inhibitors, relating to the NO signaling pathways, into intracisternal space. The intracisternal pretreatments with the NO synthase inhibitor L-NAME, the NO-sensitive guanylate cyclase inhibitor ODQ, and the protein kinase C inhibitor GF109203X, all of which are permeable to the cell membrane, significantly reduced the formalin-induced pain, whereas the membrane-impermeable NO scavenger PTIO significantly enhanced it, compared to vehicle controls. These data suggest that an overall effect of NO production in the trigeminal nucleus is pronociceptive, but NO extracellularly diffused out of its producing neurons would have an antinociceptive action.

Rapamycin reduces orofacial nociceptive responses and microglial p38 mitogen-activated protein kinase phosphorylation in trigeminal nucleus caudalis in mouse orofacial formalin model

  • Yeo, Ji-Hee;Kim, Sol-Ji;Roh, Dae-Hyun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제25권4호
    • /
    • pp.365-374
    • /
    • 2021
  • The mammalian target of rapamycin (mTOR) plays a role in various cellular phenomena, including autophagy, cell proliferation, and differentiation. Although recent studies have reported its involvement in nociceptive responses in several pain models, whether mTOR is involved in orofacial pain processing is currently unexplored. This study determined whether rapamycin, an mTOR inhibitor, reduces nociceptive responses and the number of Fos-immunoreactive (Fos-ir) cells in the trigeminal nucleus caudalis (TNC) in a mouse orofacial formalin model. We also examined whether the glial cell expression and phosphorylated p38 (p-p38) mitogen-activated protein kinases (MAPKs) in the TNC are affected by rapamycin. Mice were intraperitoneally given rapamycin (0.1, 0.3, or 1.0 mg/kg); then, 30 min after, 5% formalin (10 μl) was subcutaneously injected into the right upper lip. The rubbing responses with the ipsilateral forepaw or hindpaw were counted for 45 min. High-dose rapamycin (1.0 mg/kg) produced significant antinociceptive effects in both the first and second phases of formalin test. The number of Fos-ir cells in the ipsilateral TNC was also reduced by high-dose rapamycin compared with vehicle-treated animals. Furthermore, the number of p-p38-ir cells the in ipsilateral TNC was significantly decreased in animals treated with high-dose rapamycin; p-p38 expression was co-localized in microglia, but not neurons and astrocytes. Therefore, the mTOR inhibitor, rapamycin, reduces orofacial nociception and Fos expression in the TNC, and its antinociceptive action on orofacial pain may be associated with the inhibition of p-p38 MAPK in the microglia.

The anti-nociceptive effect of BPC-157 on the incisional pain model in rats

  • Jung, Young-Hoon;Kim, Haekyu;Kim, Hyaejin;Kim, Eunsoo;Baik, Jiseok;Kang, Hyunjong
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • 제22권2호
    • /
    • pp.97-105
    • /
    • 2022
  • Background: The pentadecapeptide BPC-157 has been shown to have anti-inflammatory and wound healing effects on multiple target tissues and organs. Peptides have potent anti-inflammatory effects on periodontal tissues in rats with periodontitis. Few studies have investigated the effect of BPC-157 on pain after dental procedures or oral surgeries. The purpose of the present study was to investigate the antinociceptive effects of BPC-157 on postoperative incisional pain in rats. Methods: Sprague-Dawley rats were randomly divided into five groups: control (saline with the same volume), BPC10 (10 ㎍/kg of BPC-157), BPC20 (20 ㎍/kg of BPC-157), BPC40 (40 ㎍/kg of BPC-157), and morphine (5 mg/kg of morphine). A 1-cm longitudinal incision was made through the skin, fascia, and muscle of the plantar aspect of the hind paw in isoflurane-anesthetised rats. Withdrawal responses were measured using von Frey filaments at 0, 2, 6 h and 4, 7 d after incision. The formalin test was also performed to differentiate its anti-nociceptive effect from an inflammatory reaction or central sensitization. Pain behavior was quantified periodically in phases 1 and 2 by counting the number of flinches in the ipsilateral paw after injection with 30 µL of 5% formalin. Results: The threshold of mechanical allodynia was significantly increased in the BPC10, BPC20, BPC40 and morphine groups compared with that in the control group at 2 h. These increasing thresholds then returned to the levels of the control group. The BPC-157 group showed a much higher threshold at 4 days after incision than the control group. The thresholds of the BPC groups, except the morphine group, were normalized 7 days after incision. The flinching numbers of the BPC10, BPC20, BPC40 and morphine groups were significantly decreased in phase 1, but there was no decrease in the BPC-157 groups except the morphine group in phase 2. Conclusions: BPC-157 was effective only for a short period after incision. It was also effective during phase 1 but not during phase 2, as determined by the formalin test. BPC-157 might have a short antinociceptive effect, even though it has anti-inflammatory and wound healing effects.

Analgesic effect of Clematidis Radix (CR) herb-acupuncture in a rat model of pain and inflammation

  • Hwang, Hye-Jeong;Kim, Seung-Tae;Lee, Hye-Jung;Kim, Young-Suk;Shim, In-Sop;Park, Hi-Joon;Choi, Won-Ju;Kim, Jang-Hyun;Hahm, Dae-Hyun
    • Advances in Traditional Medicine
    • /
    • 제7권5호
    • /
    • pp.501-508
    • /
    • 2008
  • Anti-nociceptive and anti-inflammatory effects of Clematidis Radix (CR)-distillates were investigated in three different pain animal models. Highly purified distillate of CR was injected to Zusanli (ST36) acupoint, called CR herb-acupuncture in the Korean traditional medicine. In tail flick latency test, the CR herb-acupuncture treatment did not show a significant effect of relieving acute phasic pain. To investigate the anti-inflammatory effect of CR herb-acupuncture, inflammatory pain was induced by subcutaneous injection of formalin to the plantar tissue or intra-articular injection of carrageenan to the tibio-tarsal joint in the rats. And the medicinal effect of CR herb-acupuncture was evaluated by analyzing pain behavior such as licking or biting behavior, or by measuring weight distribution ratio between two foot and ankle circumference. In the rat formalin test, the analgesic effect of CR herb-acupuncture was more pronounced in the late phase (for 20 min after the early phase) than in the early phase (for the first 10 min post formalin injection). It also significantly alleviated the carrageenan-induced monoarthritis, in terms of weight distribution ratio and ankle edema. These results revealed that CR herb-acupuncture was effective to treat the inflammatory pain and could be used as an analgesic treatment with an antiinflammatory effect.

Roles of Opioid Receptor Subtype in the Spinal Antinociception of Selective Cyclooxygenase 2 Inhibitor

  • Choi, Cheol-Hun;Kim, Woong-Mo;Lee, Hyung-Gon;Jeong, Cheol-Won;Kim, Chang-Mo;Lee, Seong-Heon;Yoon, Myung-Ha
    • The Korean Journal of Pain
    • /
    • 제23권4호
    • /
    • pp.236-241
    • /
    • 2010
  • Background: Selective inhibitors of cycloosygenase (COX)-2 are commonly used analgesics in various pain conditions. Although their actions are largely thought to be mediated by the blockade of prostaglandin (PG) biosynthesis, evidences suggesting endogenous opioid peptide link in spinal antinociception of COX inhibitor have been reported. We investigated the roles of opioid receptor subtypes in the spinal antionociception of selective COX-2 inhibitor. Methods: To examine the antionociception of a selective COX-2 inhibitor, DUP-697 was delivered through an intrathecal catheter, 10 minutes before the formalin test in male Sprague-Dawley rats. Then, the effect of intrathecal pretreatment with CTOP, naltrindole and GNTI, which are ${\mu}$, $\delta$, and k opioid receptor antagonist, respectively, on the analgesia induced by DUP-697 was assessed. Results: Intrathecal DUP-697 reduced the flinching response evoked by formalin injection during phase 1 and 2 Naltrindole and GNTI attenuated the antinociceptive effect of intrathecal DUP-697 during both phases of the formalin test, CTOP reversed the antinociception of DUP-697 during phase 2, but not during phase 1, Conclusions: Intrathecal DUP-697, a selective COX-2 inhibitor, effectively relieved inflammatory pain in rats. The $\delta$ and $\kappa$ opioid receptors are involved in the activity of COX-2 inhibitor on the facilitated state as well as acute pain at the spinal level, whereas the ${\mu}$ opioid receptor is related only to facilitated pain.

Antinociceptive Effect of Nicotine in Various Pain Models in the Mouse

  • Han Ki-Jung;Choi Seong-Soo;Lee Jin-Young;Lee Han-Kyu;Shim Eon-Jeong;Kwon Min Soo;Seo Young-Jun;Suh Hong-Won
    • Archives of Pharmacal Research
    • /
    • 제28권2호
    • /
    • pp.209-215
    • /
    • 2005
  • The antinociceptive effect of nicotine administered intracereboventricularly (i.c.v.) or intrathecally (i.t) in several pain models was examined in the present study. We found that i.t. treatment with nicotine (from 5 to 20 g) dose-dependently blocked pain behavior revealed during the second phase, but not during the first phase in the formalin test. In addition, i.c.v. treatment with nicotine (from 0.1 to $10\;{\mu}g$) dose-dependently attenuated pain behavior revealed during both the first and second phases. In addition to the formalin test, nicotine administered i.c.v. or i.t. attenuated acetic acid-induced writhing response. Furthermore, i.c.v. or i.t. administration of nicotine did not cause licking, scratching and biting responses induced by substance P, glutamate, TNF-${\alpha}$(100 pg), IL-$1{\beta}$(100 pg) and INF-${\gamma}$ (100 pg) injectied i.t. The antinociception induced by supraspinally-administered nicotine appears to be more effective than that resulting from spinally administered nicotine. Our results suggest that nicotine administration induces antinociception by acting on the central nervous system and has differing antinociceptive profiles according to the various pain models.