• 제목/요약/키워드: forest soils

검색결과 495건 처리시간 0.031초

토양의 물리화학적 성질에 의한 소나무림 임지생산력 추정 (Estimation of Site Productivity of Pinus densiflora by the Soil Physico-chemical Properties)

  • 박남창;이광수;정수영
    • 한국토양비료학회지
    • /
    • 제42권3호
    • /
    • pp.160-166
    • /
    • 2009
  • We estimated site productivity for unstocked land based on the relationship between site index (i.e., average height of dominant trees at fixed age) and soil physico-chemical properties of Pinus densiflora stands. Site index relates to a direct method of determining a tree's response to a specific environment such as forest soil and climate conditions. We selected 78 sites in 22 P. densiflora stands of central temperate forest zone, and sampled soils for physicochemical analyzing. And 13 properties of soils were statistically treated by stepwise regression. In the degree of contribution of the variables to site index, the highly effective variables in A horizon were OM, clay content, sand content, available $P_2O_5$, and Exch. $Ca^{{+}{+}}$ inorder, and in B horizon T.N., O.M., Soil pH, cation exchange capacity(C.E.C.), and sand content in order. In both A and B horizon of the soil for P. densiflora stands, the variables commonly contributed to the site index were sand content and OM. These results may be useful to provide not only important criteria for establishment of Pinus densiflora stand sespecially in unstocked land but also aguidance for reforestation.

Stable Nitrogen Isotopes in a Forested Watershed in Taiwan

  • Owen, Jeffrey S.
    • Journal of Forest and Environmental Science
    • /
    • 제29권2호
    • /
    • pp.116-124
    • /
    • 2013
  • Differences in rates and patterns of nitrogen cycling have been correlated with nitrogen stable isotope measurements in forest ecosystems of tropical and temperate regions, but limited similar work has been conducted in sub-tropical forests. This study investigated patterns in stable N isotopic composition in a subtropical forest in Taiwan by sampling three soil profiles and overstory and understory foliage. Soil ${\delta}^{15}N$ in the forest floor ranged from -1.8 to -1.8‰. Mineral soils had higher ${\delta}^{15}N$ (4.1 to 6.0‰). Foliage ${\delta}^{15}N$ in overstory trees ranged from -6.6 to -2.0‰, and understory foliage ${\delta}^{15}N$ ranged from -5.0 to -1.2‰. There was a weak correlation between foliar % N and ${\delta}^{15}N$ ($r^2=0.214$). Compared to results from similar surveys in tropical and temperate forests, foliar ${\delta}^{15}N$ values were generally lower. These results help highlight the need for improved knowledge regarding the relationships between patterns in N stable isotopes and processes affecting rates of N cycling, especially as related to wider scale patterns in forest ecosystems within the east-Asia region.

지질(地質)이 경북(慶北) 산림황폐(山林荒廢)에 미친 영향(影響) (The Effects of Geological Features on Forest Devastation in Kyungpook Province Area)

  • 손두식;이헌호;박상준;조재규
    • 한국환경복원기술학회지
    • /
    • 제2권4호
    • /
    • pp.1-8
    • /
    • 1999
  • Forest devastation in Korea was caused by several factors such as internal factors from geological features and external factors from artificial forest damages including fuel wood collection from forests, forest fires, shifting cultivations and so on. According to the reports of 1935, lots of forest devastation in Kyungpook province area occurred around the main and branch stream of Nakdong river. Main factors of occurring forest devastation in 1935 were investigated by the methods of forest devastation rate and the population density at the basin of Nakdong river. But based on our study, forest devastation mainly occurred in rock zones of granite and granite gneiss, next to Nakdong formation but scarcely occurred in Hayang formation. Clay of the weathered soils of granite and granite gneiss was lost by rainfall, but remaining coarse-sandy soils(or grits) have poored conditions in vegetation's growth, which are due to high level of water permeability, lack of water-holding capacity and dried conditions. Generally, pine forests are mainly growing up in these regions. It is supposed that forest devastation was accelerated due to long periods of natural regeneration and no ability of natural regeneration by sprout after frequent collections of fuel wood and cuttings from pine forest on those grit areas. These results indicated that the high rate of forest devastation occurred around the basin with the high resident population density, which was partly due to forest damages by fuel collection. Moreover, both geological features and number of residents had much influence on forest devastation. Forest devastation was positively correlated with those variables(r=+0.73).

  • PDF

백두산의 식생에 따른 토양 미생물의 분포 및 특성 (Distribution and Properties of Soil Microorganisms Isolated from Representative Plant Communities of Mt. Paektu)

  • 성치남;백근식;김종홍
    • The Korean Journal of Ecology
    • /
    • 제21권5_2호
    • /
    • pp.575-583
    • /
    • 1998
  • Physicochemical factors, microbial population size and the properties of the bacterial isolates were assessed to find out the nature of soil ecosystem of Mt. Paektu. Samples were obtained from the surface layer of soils on which specific plant community is developed. Average content of moisture, organic matter and avaiable phosphate of the soils were 21.6%, 17.3% and 2.48mg/100g, respectively. These values were similar to those of developing forest soils, but were slightly lower than those of climax ecosystem such as Piagol in Mt. Chiri. The population size of soil bacteria ranged from 2.7 to $202.5{\times}10^5$ CFU/g.dry soil, and the size is somewhat dependent on the content of moisture and oranic matter of the forest soil. A large number of bacteria was able to decompose macromolecules such as starch, elastin and gelatin. While the distribution rate of resistant bacteria to antibiotics was high, that to toxic chemicals was low. This means that the competition between microorgani는 predominate over the interference with artificial behaviour such as spread of pesticides in the surveyed region. Bacterial species composition of each soil was comparatively simple. Pseudomonas, Agrobacterium, Flavobacterium and Xanthomonas which are Gram-negative short rods were widely distributed in the forest soils. The endospore forming Bacillus species were also main constituents of the soil microflroa. any one of the strains was not identified as Azospirillum or Micrococcus which are known to be one of major constituents of the forest soil. for the correct identification of isolates chemotaxonomic studies will be proceeded, and the strains are to be stored in the Type collection Center.

  • PDF

국내 산림의 간벌에 따른 직경 생장량 및 탄소 저장량 변화에 관한 메타 분석 (A Meta-analysis on the Effect of Forest Thinning on Diameter Growth and Carbon Stocks in Korea)

  • 이종열;한승현;김성준;이소혜;손영모;손요환
    • 한국산림과학회지
    • /
    • 제104권4호
    • /
    • pp.527-535
    • /
    • 2015
  • 본 연구는 간벌에 따른 국내 산림의 직경 생장량과 탄소 저장량(임목, 고사목, 낙엽층, 토양) 변화를 파악하기 위하여 관련 결과들을 메타 분석한 것이다. 메타 분석 결과 간벌에 의하여 직경 생장량과 토양 탄소 저장량은 각각 39.2% 및 12.8% 증가하였고 임목 탄소 저장량은 30.9% 감소하는 것으로 나타났다. 그러나 고사목과 낙엽층 탄소 저장량은 간벌에 따른 변화를 보이지 않았다. 한편 직경 생장량과 임목 탄소 저장량은 간벌 강도 및 회복 시간(간벌 후 시간의 경과)과 상관 관계를 보였다. 그리고 낙엽층 탄소 저장량은 회복 시간과 상관 관계를 보였으나, 고사목과 토양 탄소 저장량은 간벌 강도 및 회복 시간과 상관 관계를 보이지 않았다. 또한 간벌 강도와 회복 시간에 따른 직경 생장량과 임목 탄소 저장량의 회귀식을 개발하였다. 고사목, 낙엽층 그리고 토양 탄소 저장량은 간벌 강도와 회복 시간과의 상관 관계가 거의 나타나지 않았으므로, 이들의 변화를 정량화하기 위해서는 본 연구에서 개발한 임목 탄소 저장량 회귀식과 산림 탄소 모델의 연계가 필요할 것으로 판단된다. 간벌에 의한 산림의 변화를 보다 정확하게 파악하기 위하여 연구 대상 수종 확대, 장기 모니터링 및 측정 주기 단축, 그리고 하층 식생 조사 등을 제언하였다.

Classification and Spatial Variability Assessment of Selected Soil Properties along a Toposequence of an Agricultural Landscape in Nigeria

  • Fawole Olakunle Ayofe;Ojetade Julius Olayinka;Muda Sikiru Adekoya;Amusan Alani Adeagbo
    • Journal of Forest and Environmental Science
    • /
    • 제39권3호
    • /
    • pp.180-194
    • /
    • 2023
  • This study characterize, classify and evaluates the function of topography on spatial variability of some selected soil properties to assist in designing land management that support uniform agricultural production. The study site, an agricultural land, was part of the derived savanna zone in southwest Nigeria. Four soil profile pits each were established along two delineated toposequence and described following the FAO/UNESCO guidelines. Samples were collected from the identified genetic horizons. Properties of four soil series developed on different positions of the two delineated Toposequence viz upper, middle, lower slopes and valley bottom positions respectively were studied. The soil samples were analysed for selected physical and chemical properties and data generated were subjected to descriptive and inferential statistics. The results showed that soil colour, depth and texture varied in response to changes in slope position and drainage condition. The sand content ranged from 61 to 90% while the bulk density ranged between 1.06 g cm-3 to 1.68 g cm-3. The soils were neutral to very strongly acid with low total exchangeable bases. Available phosphorus value were low while the extractable micronutrient concentration varied from low to medium. Soils of Asejire and Iwo series mapped in the study area were classified as Typic isohyperthermic paleustult, Apomu series as Plinthic isohyperthermic paleustult and Jago series as Aquic psamment (USDA Soil Taxonomy). These soils were correlated as Lixisol, Plinthic Lixisol and Fluvisol (World Reference Based), respectively. Major agronomic constraints of the soils associations mapped in the study area were nutrient availability, nutrient retention, slope, drainage, texture, high bulk density and shallow depth. The study concluded that the soils were not homogenous, shows moderate spatial variation across the slope, had varying potentials for sustainable agricultural practices, and thus, the agronomic constraints should be carefully addressed and managed for precision agriculture.

삼림토양의 질소 무기화와 무기질소의 동태 (Nitrogen Mineralization and Dynamics in the Forest Soil)

  • Mun, Hyeong-Tae
    • The Korean Journal of Ecology
    • /
    • 제14권3호
    • /
    • pp.317-325
    • /
    • 1991
  • Mineral nitrogen dynamics and net mineralization of nitrogen in oak(quercus accutissima) and pine(pinus rigida) forest soils were studied. Nitrogen mineralization was determined over 8-week period by incubation method at laboratory. Initial water content of incubating soils was adjusted by applying suction(30mmhg), and lossof water during incubation was recovered with deionized water using syringe at every 3 or 4days. Temperature of incubator was maintained with 35+0.3c during the incubation period. Content of organic matter, total nitrogen, nh4-n and no3-n in soils in oak stand were significantly highter than those in pine stand. soil ph was lower in pine stand than in oak stand. initial nh4-n and no3-n of soils used in incubation experiment were 12.6 ug/g and 6.5 ug/g for oak stand, and 5.3ug/g and 5.1 ug/g for pine stand, respectively. Production of nh4-n increased from the beginning st both stands, and showed a peak at 5th week in oak stand(28.5 ug/g) and 6th week in pine stand(16.7 ug/g), and then decreased. intial no3-n of soils in oak(6.5 ug/g) and pine(5.1ug/g)stands, increased to 36.2 ug/g in soils of oak stand(5th week) and 13.4 ug/g in pine stand(4th week), respectively. The low values of no3-n of the field soil in the growing season compared with those of incubating soils at both stands indicate that considerable amount of nh4-n and no3-n produced in soils of oak and pine stands during two-months incubation were 59.7 and 141.6mg/kg soil, and 51.9 and 41.2mg/kg soil, respectively.

  • PDF

산림토양내 carboxymethylcellulase의 분포와 미생물의 생장 및 활성과의 상관에 대하여 (Distribution of abiontic carboxymethylcellulase in relation to microbial growth and activity in forest soils)

  • 이영하;하영칠;홍순우
    • 미생물학회지
    • /
    • 제23권2호
    • /
    • pp.147-156
    • /
    • 1985
  • Seasonal and vertical variations of abiontic soil carboxymethylcellulase (CMCase) activities were assessed every other month for a year in two contrasting forest soils and evaluated the relationships between soil CMCase activity and environmental parameters. In climax deciduous soil, variations in CMCase activities caused by differences in sampling time were greater than those caused by differences in soil depth. On the other hand, counter phenomenon was obserned in coniferous soil at the stage of development. Correlation analyses showed that soil CMCase activities were significantly (p>0.01) correlated with microbial respiration rates ($O_2$ uptake) and all of the microbial population sizes. From these results, it is suggested that determination of abiontic soil CMCase activity is an useful additional index for evaluating the overall microbial growth and activity in soils.

  • PDF

Controlling environmental factors of soil enzyme activities at three altitudes on Mt. Jumbong

  • Jang, In-Young;Kang, Ho-Jeong
    • Journal of Ecology and Environment
    • /
    • 제33권3호
    • /
    • pp.223-228
    • /
    • 2010
  • Soil microbes perform crucial roles in the nutrient cycles of forest ecosystems, by effecting the decomposition of organic matter. Enzyme activities have been used to evaluate decomposition rates, as well as microbial activities. The principal objectives of this study were to determine the activities of different soil enzymes, to compare enzyme activities at different elevations, and to elucidate the most important controlling variables for enzyme activities. We conducted a field survey at three sites in Mt. Jumbong on a monthly basis from May, 2004 to September, 2005. Enzyme activities did not change substantially over different seasons. However, the spatial differences were distinct; the lowest elevation site evidenced the lowest levels of enzyme activity. Soils at the lowest elevation were nutrient-depleted soils, and enzyme activities appeared to be affected by precipitation and temperature. However, enzyme activities in fertile soils at high elevations were associated with nutrients and organic matter. The enzyme activities detected in this study differed significantly at the three elevations, and their controlling variables also evidenced different factors.

토양의 침식과 보존에 관한 이론적 분석 4. 삼림토양의 침식과 유실기구 (The Theoretical Analyses of the Soil Erosion and Conservation 4. Erosion and Leaching Mechanism of the Forest Soils)

  • 장남기
    • 아시안잔디학회지
    • /
    • 제10권1호
    • /
    • pp.49-59
    • /
    • 1996
  • This report is researched on the cause and mechanism of soil erosion in comparison among Kwangnung, Mt. Kaya, Mt. Chili, and Mt. Soorak by physical and chemical analyses of their for- est soils. Clay, silt, and fine sand of Mt. Soorak are far less than those of Mt. Chili, Mt. Kaya, and Kwangnung area while coarse sand is very high level. The clay ratio of soil at Mt. Soorak is the most high level in comparison with that of other area. Denudation at Mt. Soorak, therefore, is cause of erosion by the result of transportation of soil particles. The eroding velocity increase for larger particle size and stronger cohesion between soil particles. Very fine sand, silt, and clay can be present in suspension near the bottom and the size of the particles in suspension depends upon the velocity of the current near the bottom and the roughness of the bottom. Key words: Theoretical analyses, Soil erosion and conservation, Forest soils.

  • PDF