• Title/Summary/Keyword: forest machine

Search Result 775, Processing Time 0.028 seconds

A Comparative Study on Game-Score Prediction Models Using Compuational Thinking Education Game Data (컴퓨팅 사고 교육 게임 데이터를 사용한 게임 점수 예측 모델 성능 비교 연구)

  • Yang, Yeongwook
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.11
    • /
    • pp.529-534
    • /
    • 2021
  • Computing thinking is regarded as one of the important skills required in the 21st century, and many countries have introduced and implemented computing thinking training courses. Among computational thinking education methods, educational game-based methods increase student participation and motivation, and increase access to computational thinking. Autothinking is an educational game developed for the purpose of providing computational thinking education to learners. It is an adaptive system that dynamically provides feedback to learners and automatically adjusts the difficulty according to the learner's computational thinking ability. However, because the game was designed based on rules, it cannot intelligently consider the computational thinking of learners or give feedback. In this study, game data collected through Autothikning is introduced, and game score prediction that reflects computational thinking is performed in order to increase the adaptability of the game by using it. To solve this problem, a comparative study was conducted on linear regression, decision tree, random forest, and support vector machine algorithms, which are most commonly used in regression problems. As a result of the study, the linear regression method showed the best performance in predicting game scores.

Imputation of missing precipitation data using machine learning algorithms (머신러닝 알고리즘을 이용한 결측 강우 데이터 추정에 관한 연구)

  • Heechan Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.320-320
    • /
    • 2023
  • 강우 데이터는 수문기상, 환경, 농업, 자연재해, 그리고 수자원 시스템 분야에서 가장 필수적인 기본 요소 중 하나이다. 또한 강우 데이터는 수문학적 분석에서 활용되는 필수 입력 자료 중 하나로 관측 데이터의 품질에 따라 수문 모형을 이용한 모의 결과물의 정확도가 결정된다고 할 수 있다. 따라서, 강우 관측소별로 강우 데이터의 품질을 어떻게 관리하느냐에 따라 수문 모형의 활용 범위 및 수자원 관리의 효율성이 결정될 수 있다. 강우의 시공간적 변동성은 수 많은 인자들과 직간접적으로 연계되어 있기 때문에 미계측 강우 자료에 대해 직접 관측이 아닌 수치 모형을 이용하여 강우의 발생과 강우량을 산정하는 것은 매우 복잡한 과제 중 하나이다. 현재 국내에서 운용되고 있는 강우 관측소의 경우에도 미계측 된 강우 데이터가 존재함으로써 강우 데이터의 활용에 제한이 생기는 경우가 있다. 따라서, 이러한 미계측 데이터의 추정 및 보완은 보다 효과적인 수재해 방지, 수자원 관리를 위한 필수 과제 중 하나이다. 일반적으로, 미계측 강우를 산정하기 위해서 Kriging, Thiessen, 등우선법, 그리고 역거리 관측법 등 다양한 수문학적 방법들이 적용되고 있다. 이러한 방법들은 산악효과나 강우 관측소의 분포 상태 등을 고려하지 못하기 때문에 측정하는 지역에 따라 강우 추정 오차가 커질 수 있다는 한계가 있다. 최근에는 데이터 관측 시스템과 빅데이터 기술의 발전과 활용 가능한 데이터의 양이 증가함에 따라 머신러닝을 활용한 사례가 증가하고 있다. 머신러닝은 데이터 사이의 관계를 기반으로 분류, 회귀, 그리고 예측 문제에 주로 사용되는 기법 중 하나이다. 따라서, 본 연구에서는 광주광역시 지역에 위치한 주요 강우 관측 지점들을 대상으로 미계측 된 시강우 데이터를 추정 및 복원하고자 한다. 여기서 데이터 추정 기술이란 미계측 강우의 발생 유무 및 강우량을 추정할 수 있는 기술을 의미한다. 이를 위해 대표적인 머신러닝 알고리즘인 인공신경망(Artificial Neural Network) 및 랜덤포레스트(Random Forest)를 적용하였다.

  • PDF

Does the quality of orthodontic studies influence their Altmetric Attention Score?

  • Thamer Alsaif;Nikolaos Pandis;Martyn T. Cobourne;Jadbinder Seehra
    • The korean journal of orthodontics
    • /
    • v.53 no.5
    • /
    • pp.328-335
    • /
    • 2023
  • Objective: The aim of this study was to determine whether an association between study quality, other study characteristics, and Altmetric Attention Scores (AASs) existed in orthodontic studies. Methods: The Scopus database was searched to identify orthodontic studies published between January 1, 2017, and December 31, 2019. Articles that satisfied the eligibility criteria were included in this study. Study characteristics, including study quality were extracted and entered into a pre-pilot data collection sheet. Descriptive statistics were calculated. On an exploratory basis, random forest and gradient boosting machine learning algorithms were used to examine the influence of article characteristics on AAS. Results: In total, 586 studies with an AAS were analyzed. Overall, the mean AAS of the samples was 5. Twitter was the most popular social media platform for publicizing studies, accounting for 53.7%. In terms of study quality, only 19.1% of the studies were rated as having a high level of quality, with 41.8% of the studies deemed moderate quality. The type of social media platform, number of citations, impact factor, and study type were among the most influential characteristics of AAS in both models. In contrast, study quality was one of the least influential characteristics on the AAS. Conclusions: Social media platforms contributed the most to the AAS for orthodontic studies, whereas study quality had little impact on the AAS.

Linkage of Numerical Analysis Model and Machine Learning for Real-time Flood Risk Prediction (도시홍수 위험도 실시간 표출을 위한 수치해석 모형과 기계학습의 연계)

  • Kim, Hyun Il;Han, Kun Yeun;Kim, Tae Hyung;Choi, Kyu Hyun;Cho, Hyo Seop
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.332-332
    • /
    • 2021
  • 도시화가 상당히 이뤄지고 기습적인 폭우의 발생이 불확실하게 나타나는 시점에서 재산 및 인명피해를 야기할 수 있는 내수침수에 대한 위험도가 증가하고 있다. 내수침수에 대한 예측을 위하여 실측강우 또는 확률강우량 시나리오를 참조하고 연구대상 지역에 대한 1차원 그리고 2차원 수리학적 해석을 실시하는 연구가 오랫동안 진행되어 왔으나, 수치해석 모형의 경우 다양한 수문-지형학적 자료 및 계측 자료를 요구하고 집약적인 계산과정을 통한 단기간 예측에 어려움이 있음이 언급되어 왔다. 본 연구에서는 위와 같은 문제점을 해결하기 위하여 단일 도시 배수분구를 대상으로 관측 강우 자료, 1, 2차원 수치해석 모형, 기계학습 및 딥러닝 기법을 적용한 실시간 홍수위험지도 예측 모형을 개발하였다. 강우자료에 대하여 실시간으로 홍수량을 예측할 수 있도록 LSTM(Long-Short Term Memory) 기법을 적용하였으며, 전국단위 강우에 대한 다양한 1차원 도시유출해석 결과를 학습시킴으로써 예측을 수행하였다. 침수심의 공간적 분포의 경우 로지스틱 회귀를 이용하여, 기준 침수심에 대한 예측을 각각 수행하였다. 홍수위험 등급의 경우 침수심, 유속 그리고 잔해인자를 고려한 홍수위험등급 공식을 적용하여 산정하였으며, 이 결과를 랜덤포레스트(Random Forest)에 학습함으로써 실시간 예측을 수행할 수 있도록 개발하였다. 침수범위 및 홍수위험등급에 대한 예측은 격자 단위로 이뤄졌으며, 검증 자료의 부족으로 침수 흔적도를 통하여 검증된 2차원 침수해석 결과와 비교함으로써 예측력을 평가하였다. 본 기법은 특정 관측강우 또는 예측강우 자료가 입력되었을 때에, 도시 유역 단위로 접근이 불가하여 통제해야 할 구간을 실시간으로 예측하여 관리할 수 있을 것으로 판단된다.

  • PDF

Evaluation of Rainfall Erosivity Factor Estimation Using Machine and Deep Learning Models (머신러닝 및 딥러닝을 활용한 강우침식능인자 예측 평가)

  • Lee, Jimin;Lee, Seoro;Lee, Gwanjae;Kim, Jonggun;Lim, Kyoung Jae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.450-450
    • /
    • 2021
  • 기후변화 보고서에 따르면 집중 호우의 강도 및 빈도 증가가 향후 몇 년동안 지속될 것이라 제시하였다. 이러한 집중호우가 빈번히 발생하게 된다면 강우 침식성이 증가하여 표토 침식에 더 취약하게 발생된다. Universal Soil Loss Equation (USLE) 입력 매개 변수 중 하나인 강우침식능인자는 토양 유실을 예측할때 강우 강도의 미치는 영향을 제시하는 인자이다. 선행 연구에서 USLE 방법을 사용하여 강우침식능인자를 산정하였지만, 60분 단위 강우자료를 이용하였기 때문에 정확한 30분 최대 강우강도 산정을 고려하지 못하는 한계점이 있다. 본 연구의 목적은 강우침식능인자를 이전의 진행된 방법보다 더 빠르고 정확하게 예측하는 머신러닝 모델을 개발하며, 총 월별 강우량, 최대 일 강우량 및 최대 시간별 강우량 데이터만 있어도 산정이 가능하도록 하였다. 이를 위해 본 연구에서는 강우침식능인자의 산정 값의 정확도를 높이기 위해 1분 간격 강우 데이터를 사용하며, 최근 강우 패턴을 반영하기 위해서 2013-2019년 자료로 이용했다. 우선, 월별 특성을 파악하기 위해 USLE 계산 방법을 사용하여 월별 강우침식능인자를 산정하였고, 국내 50개 지점을 대상으로 계산된 월별 강우침식능인자를 실측 값으로 정하여, 머신러닝 모델을 통하여 강우침식능인자 예측하도록 학습시켜 분석하였다. 이 연구에 사용된 머신러닝 모델들은 Decision Tree, Random Forest, K-Nearest Neighbors, Gradient Boosting, eXtreme Gradient Boost 및 Deep Neural Network을 이용하였다. 또한, 교차 검증을 통해서 모델 중 Deep Neural Network이 강우침식능인자 예측 정확도가 가장 높게 산정하였다. Deep Neural Network은 Nash-Sutcliffe Efficiency (NSE) 와 Coefficient of determination (R2)의 결과값이 0.87로서 모델의 예측성을 입증하였으며, 검증 모델을 테스트 하기 위해 국내 6개 지점을 무작위로 선별하여 강우침식능인자를 분석하였다. 본 연구 결과에서 나온 Deep Neural Network을 이용하면, 훨씬 적은 노력과 시간으로 원하는 지점에서 월별 강우침식능인자를 예측할 수 있으며, 한국 강우 패턴을 효율적으로 분석 할 수 있을 것이라 판단된다. 이를 통해 향후 토양 침식 위험을 지표화하는 것뿐만 아니라 토양 보전 계획을 수립할 수 있으며, 위험 지역을 우선적으로 선별하고 제시하는데 유용하게 사용 될 것이라 사료된다.

  • PDF

Prediction of Agricultural Purchases Using Structured and Unstructured Data: Focusing on Paprika (정형 및 비정형 데이터를 이용한 농산물 구매량 예측: 파프리카를 중심으로)

  • Somakhamixay Oui;Kyung-Hee Lee;HyungChul Rah;Eun-Seon Choi;Wan-Sup Cho
    • The Journal of Bigdata
    • /
    • v.6 no.2
    • /
    • pp.169-179
    • /
    • 2021
  • Consumers' food consumption behavior is likely to be affected not only by structured data such as consumer panel data but also by unstructured data such as mass media and social media. In this study, a deep learning-based consumption prediction model is generated and verified for the fusion data set linking structured data and unstructured data related to food consumption. The results of the study showed that model accuracy was improved when combining structured data and unstructured data. In addition, unstructured data were found to improve model predictability. As a result of using the SHAP technique to identify the importance of variables, it was found that variables related to blog and video data were on the top list and had a positive correlation with the amount of paprika purchased. In addition, according to the experimental results, it was confirmed that the machine learning model showed higher accuracy than the deep learning model and could be an efficient alternative to the existing time series analysis modeling.

Real-time prediction on the slurry concentration of cutter suction dredgers using an ensemble learning algorithm

  • Han, Shuai;Li, Mingchao;Li, Heng;Tian, Huijing;Qin, Liang;Li, Jinfeng
    • International conference on construction engineering and project management
    • /
    • 2020.12a
    • /
    • pp.463-481
    • /
    • 2020
  • Cutter suction dredgers (CSDs) are widely used in various dredging constructions such as channel excavation, wharf construction, and reef construction. During a CSD construction, the main operation is to control the swing speed of cutter to keep the slurry concentration in a proper range. However, the slurry concentration cannot be monitored in real-time, i.e., there is a "time-lag effect" in the log of slurry concentration, making it difficult for operators to make the optimal decision on controlling. Concerning this issue, a solution scheme that using real-time monitored indicators to predict current slurry concentration is proposed in this research. The characteristics of the CSD monitoring data are first studied, and a set of preprocessing methods are presented. Then we put forward the concept of "index class" to select the important indices. Finally, an ensemble learning algorithm is set up to fit the relationship between the slurry concentration and the indices of the index classes. In the experiment, log data over seven days of a practical dredging construction is collected. For comparison, the Deep Neural Network (DNN), Long Short Time Memory (LSTM), Support Vector Machine (SVM), Random Forest (RF), Gradient Boosting Decision Tree (GBDT), and the Bayesian Ridge algorithm are tried. The results show that our method has the best performance with an R2 of 0.886 and a mean square error (MSE) of 5.538. This research provides an effective way for real-time predicting the slurry concentration of CSDs and can help to improve the stationarity and production efficiency of dredging construction.

  • PDF

Application and Comparison of Data Mining Technique to Prevent Metal-Bush Omission (메탈부쉬 누락예방을 위한 데이터마이닝 기법의 적용 및 비교)

  • Sang-Hyun Ko;Dongju Lee
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.3
    • /
    • pp.139-147
    • /
    • 2023
  • The metal bush assembling process is a process of inserting and compressing a metal bush that serves to reduce the occurrence of noise and stable compression in the rotating section. In the metal bush assembly process, the head diameter defect and placement defect of the metal bush occur due to metal bush omission, non-pressing, and poor press-fitting. Among these causes of defects, it is intended to prevent defects due to omission of the metal bush by using signals from sensors attached to the facility. In particular, a metal bush omission is predicted through various data mining techniques using left load cell value, right load cell value, current, and voltage as independent variables. In the case of metal bush omission defect, it is difficult to get defect data, resulting in data imbalance. Data imbalance refers to a case where there is a large difference in the number of data belonging to each class, which can be a problem when performing classification prediction. In order to solve the problem caused by data imbalance, oversampling and composite sampling techniques were applied in this study. In addition, simulated annealing was applied for optimization of parameters related to sampling and hyper-parameters of data mining techniques used for bush omission prediction. In this study, the metal bush omission was predicted using the actual data of M manufacturing company, and the classification performance was examined. All applied techniques showed excellent results, and in particular, the proposed methods, the method of mixing Random Forest and SA, and the method of mixing MLP and SA, showed better results.

A Method for Generating Malware Countermeasure Samples Based on Pixel Attention Mechanism

  • Xiangyu Ma;Yuntao Zhao;Yongxin Feng;Yutao Hu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.2
    • /
    • pp.456-477
    • /
    • 2024
  • With information technology's rapid development, the Internet faces serious security problems. Studies have shown that malware has become a primary means of attacking the Internet. Therefore, adversarial samples have become a vital breakthrough point for studying malware. By studying adversarial samples, we can gain insights into the behavior and characteristics of malware, evaluate the performance of existing detectors in the face of deceptive samples, and help to discover vulnerabilities and improve detection methods for better performance. However, existing adversarial sample generation methods still need help regarding escape effectiveness and mobility. For instance, researchers have attempted to incorporate perturbation methods like Fast Gradient Sign Method (FGSM), Projected Gradient Descent (PGD), and others into adversarial samples to obfuscate detectors. However, these methods are only effective in specific environments and yield limited evasion effectiveness. To solve the above problems, this paper proposes a malware adversarial sample generation method (PixGAN) based on the pixel attention mechanism, which aims to improve adversarial samples' escape effect and mobility. The method transforms malware into grey-scale images and introduces the pixel attention mechanism in the Deep Convolution Generative Adversarial Networks (DCGAN) model to weigh the critical pixels in the grey-scale map, which improves the modeling ability of the generator and discriminator, thus enhancing the escape effect and mobility of the adversarial samples. The escape rate (ASR) is used as an evaluation index of the quality of the adversarial samples. The experimental results show that the adversarial samples generated by PixGAN achieve escape rates of 97%, 94%, 35%, 39%, and 43% on the Random Forest (RF), Support Vector Machine (SVM), Convolutional Neural Network (CNN), Convolutional Neural Network and Recurrent Neural Network (CNN_RNN), and Convolutional Neural Network and Long Short Term Memory (CNN_LSTM) algorithmic detectors, respectively.

Clinicoradiological Characteristics in the Differential Diagnosis of Follicular-Patterned Lesions of the Thyroid: A Multicenter Cohort Study

  • Jeong Hoon Lee;Eun Ju Ha;Da Hyun Lee;Miran Han;Jung Hyun Park;Ji-hoon Kim
    • Korean Journal of Radiology
    • /
    • v.23 no.7
    • /
    • pp.763-772
    • /
    • 2022
  • Objective: Preoperative differential diagnosis of follicular-patterned lesions is challenging. This multicenter cohort study investigated the clinicoradiological characteristics relevant to the differential diagnosis of such lesions. Materials and Methods: From June to September 2015, 4787 thyroid nodules (≥ 1.0 cm) with a final diagnosis of benign follicular nodule (BN, n = 4461), follicular adenoma (FA, n = 136), follicular carcinoma (FC, n = 62), or follicular variant of papillary thyroid carcinoma (FVPTC, n = 128) collected from 26 institutions were analyzed. The clinicoradiological characteristics of the lesions were compared among the different histological types using multivariable logistic regression analyses. The relative importance of the characteristics that distinguished histological types was determined using a random forest algorithm. Results: Compared to BN (as the control group), the distinguishing features of follicular-patterned neoplasms (FA, FC, and FVPTC) were patient's age (odds ratio [OR], 0.969 per 1-year increase), lesion diameter (OR, 1.054 per 1-mm increase), presence of solid composition (OR, 2.255), presence of hypoechogenicity (OR, 2.181), and presence of halo (OR, 1.761) (all p < 0.05). Compared to FA (as the control), FC differed with respect to lesion diameter (OR, 1.040 per 1-mm increase) and rim calcifications (OR, 17.054), while FVPTC differed with respect to patient age (OR, 0.966 per 1-year increase), lesion diameter (OR, 0.975 per 1-mm increase), macrocalcifications (OR, 3.647), and non-smooth margins (OR, 2.538) (all p < 0.05). The five important features for the differential diagnosis of follicular-patterned neoplasms (FA, FC, and FVPTC) from BN are maximal lesion diameter, composition, echogenicity, orientation, and patient's age. The most important features distinguishing FC and FVPTC from FA are rim calcifications and macrocalcifications, respectively. Conclusion: Although follicular-patterned lesions have overlapping clinical and radiological features, the distinguishing features identified in our large clinical cohort may provide valuable information for preoperative distinction between them and decision-making regarding their management.