본 연구는 수치산림입지도, 수치기후도, 제5차 국가 산림자원조사 등의 누적된 자료와 다양한 통계모형을 이용하여 기후변화에 따른 생태권역별 임상별 산림 바이오매스 변화를 예측하였다. 그 결과 시간 경과에 따른 산림 바이오매스 변화량은 생태권역별 임상별로 서로 다른 패턴을 보였다. 산악권역, 남동산야권역, 남서산야권역에서는 시간이 경과함에 따라 모든 임상에서 산림 바이오매스가 감소하는 것으로 예측되었다. 반면에 중부산야권역의 침엽수림과 혼효림은 기후변화의 영향으로 바이오매스가 증가하는 것으로 분석되었다. 또한 해안도서권역에서는 침엽수림을 제외한 임상에서 산림 바이오매스가 증가하는 것으로 추정되었다. 본 연구는 기후변화 시나리오에 따른 지위지수 추정치 변화에 근거하여 산림 바이오매스 변화량을 산출함으로써 기후변화에 따른 산림재해 변화 패턴을 예측할 수 있는 정보를 마련하였다. 본 연구의 결과는 산림재해 대응전략 수립에 필요한 정보로 활용될 수 있을 것으로 기대된다.
우리나라 산림의 임상은 자연적·인위적 요인에 의해 지속적으로 변화하고 있다. 임상(침엽수림, 활엽수림, 혼효림)면적의 비율은 국가 산림자원 특성 파악에 중요하게 활용되는 정보이기 때문에 임상 변화에 대한 정확한 이해와 전망이 필요하다. 따라서 본 연구에서는 국가산림자원조사 시계열 자료를 이용하여 임상 변화 발생 특성을 이해하고 이를 기반으로 미래 임상 변화 예측치를 도출하는 것을 목표로 하였다. 제5차, 제7차 국가산림자원조사 자료의 10년 기간 임상 변화정보와 임상 변화에 영향을 미칠 수 있는 변수(기후, 지형, 임분, 교란 등)를 이용하여 임상 변화 특성을 분석한 결과, 우리나라 산림은 침엽수림이 감소하고 혼효림과 활엽수림이 증가하는 방향으로 변화하고 있는 것으로 확인되었다. 침엽수림에서 혼효림으로, 혼효림에서 활엽수림으로 변화되는 지역은 주로 지형적으로 습윤하고 강수량이 많아서 수분관련 생육환경이 양호하며 주변에 활엽수림이 많은 지역이었다. 또한 기온이 높은 지역, 임분의 임령과 밀도가 낮은 지역, 주변 지역에 비산림이 많은 지역 등 교란 가능성이 높은 지역에서 변화가 많이 발생했다. 이러한 임상의 변화 특성을 반영하여 기계학습 모형(SVM)을 구축하고 기후변화시나리오(RCP 8.5)를 이용하여 미래의 임상 변화를 전망한 결과, 2015년에서 2055년까지 40년 동안 침엽수림은 38.1%에서 28.5%로 감소, 활엽수림은 34.2%에서 38.8%로 증가, 혼효림은 27.7%에서 32.7%로 증가할 것으로 예측되었다. 본 미래 임상분포 변화 정보는 향후 산림관리 전략 수립의 기초자료로 활용될 수 있다.
본 연구는 우리나라의 침엽수와 활엽수림에서 발생하는 고사율(고사 입목의 재적량, %) 추정식을 개발하는 것이 목적이다. 고사율 추정을 위하여 적용한 모형은 지수식, Hamilton식 등 6개식이었으며, 이용한 변수는 흉고직경, 흉고단면적, 지위지수 등이었다. 고사율 추정에 이용한 원자료는 5차 및 6차 국가산림자원조사 자료였으며, 표본점별 고사목과 생존목의 재적량 비로서 고사율을 산정하였다. 적용한 식 중 침엽수와 활엽수의 고사율을 가장 잘 설명하는 식은 $P=(1+e^{(a+b{\times}DBH+c{\times}BA+d{\times}no\_ha+e{\times}density)})^{-1}$의 형태를 갖는 식이다. 침엽수는 약 34%, 활엽수는 약 51%의 적합도를 나타냈다. 두 식 모두 적합도가 높게 나타나지 않았는데, 이는 임목 고사에 영향을 미치는 인자가 지리적 환경, 토양, 기상, 지위, 경쟁 등 너무나 다양하기 때문이다. 따라서 본 분석에 이용한 흉고직경, 흉고단면적 등 2~3개의 변수로 산림 내 고사를 설명하기는 매우 어려운 일이라 판단된다. 그러나 전국적으로 활용될 수 있는 임상별 고사율 정보가 없는 현시점에서는 본 연구의 가치는 있다고 생각되며 추후 수관울폐도, 경쟁지수 등을 변수로 추가적으로 활용하여 고사율 추정식의 정도를 높여야 할 것이다.
본 논문은 현재 산림 분야 연구에 적용되고 향후 적용가능한 원격탐사 기술에 대한 국내외 발행된 peer-reviewed 논문의 리뷰를 바탕으로 원격탐사 기술의 국내 산림분야 적용에 대한 가능성과 한계점을 서술하였다. 원격탐사 기술은 정밀한 분석과 정교한 자료 수집을 바탕으로 대단위 산림면적 분석에 있어 필수적이며, 정보통신기술과의 융합으로 향후 임업의 새로운 시대를 열어갈 핵심 기술이다. 본 리뷰 논문에서는 다양한 원격탐사 기술 가운데 레이저 스캐닝 기술, 위성영상을 이용한 산림 측정 기술, 그리고 무인항공기를 이용한 기존 국내·외 연구사례를 분석하여 국내 산림분야 적용 가능성에 대한 기회와 한계점에 대해 서술하였다.
본 연구의 목적은 전국에 분포하는 일본잎갈나무 임분에 대해 산림시업 수행이 직경분포변화에 미치는 영향에 대해 분석하였다. 본 연구에 사용한 자료는 국가산림자원조사 중 시업지 232plots, 비시업지 47plots의 고정표본점 자료를 활용하였다. 직경분포모델은 Weibull 누적분포함수를 사용하였으며, 분석 방법에는 백분위(Percentile)에 근거한 직경모형추정, 백분위(Percentile)에 대한 모수복구 방법을 사용하였다. 개발한 모델을 이용하여 산림시업의 수행여부에 따른 시나리오(임령, 지위지수, 임분밀도) 별임분생장량을 예측한 결과, 시업지 임분의 최대임목본수를 차지하는 평균 흉고직경의 이동이 비시업지 임분에 비해 이동량과 생장량이 더 높게 나타났으며, 대경목이 차지하는 비율 또한 시업지 임분이 높게 예측되었다. 본 연구의 결과는 직경급에 따른 목재생산량의 장기적인 예측과 동적인 임분구조 해석에 기초적인 정보를 제공할 수 있을 것으로 사료되어진다.
Restorative effect of forest settings is an emerging issue in the field of forestry. It is also the central question facing those currently engaged in the psychotherapeutic interventions is which treatments work. This study was performed to investigate the efficacy of forest experience on alcoholics' depression. Among 531 participants in forest healing camps, 47 alcoholics who participated all three sessions of the camps were selected for this study. Using pre-test and post-test group design with Beck Depression Inventory (BDI), mean changes in alcoholics' depression by completion of the camp was measured. The result of this study indicated that the 3-session of forest camp played significant role in reducing participants depression levels (i.e., positive changes in depression scores).
제5차 국가산림자원조사는 국가단위의 산림자원 통계량을 산출하기 위해 설계되어 2006년부터 야외 표본점 자료를 수집하고 있다. 하지만, 표본의 개수가 적은 소면적 시군구의 산림통계를 산출하기 위해서는 보정자료를 이용하는 소면적 추정기법의 적용이 요구된다. 본 연구에서는 야외 표본점의 위치정보를 활용할 수 있는 공간통계기반 합성추정법을 적용하여 소면적 시군구의 임상별 산림면적 및 ha당 평균축적 등을 추정할 수 있는 방안을 제시하기 위해 수행하였다. 먼저 조사된 표본점은 수종별 흉고단면적의 비율에 의해 임상별로 사후층화되었다. 합성추정법을 적용하기 위하여 목표 시군과 인접하는 시군들을 하나의 가상 시군으로 설정한 후, 이러한 가상 시군에 포함되는 표본점 자료를 산림통계량 산출에 이용하였다. 합성추정법에 의한 임상별 비율은 임상도와 차이가 있는 것으로 나타났다. 한편, 합성추정법에 의한 임상별 ha당 평균축적은 표준오차가 ${\pm}3.5\;m^3/ha{\sim}{\pm}7.7\;m^3/ha$로 직접추정에 의한 표준오차(${\pm}7.8\;m^3/ha{\sim}{\pm}24.7\;m^3/ha$)보다 낮아 상대적으로 정확한 추정치를 나타내었다.
본 연구는 최근린 기법에서 거리가중치와 훈련자료의 층화에 의한 추정치의 정확도를 비교하여 효율적인 방법을 모색하기 위하여 수행하였다. 거리가중치의 경우, 유사성이 높은 훈련자료에 가중치를 부여하는 방법으로 일반적으로 적용되는 5가지의 계수(0, 0.5, 1, 1.5, 그리고 2)를 비교한 결과, 평균 편차에서 최대 ${\pm}0.6m^3/ha$로 정확도는 유사한 것으로 나타났다. 훈련자료의 층화에서는 임상구분을 적용하였을 때 추정치의 정확도가 가장 높은 것으로 나타났으며, 임상구분과 참조수평거리(반경=100 km)를 통합하여 적용하였을 경우에는 임상구분에 의한 추정치와 유사한 정확도를 나타내었다. 연구대상지의 2010년 기준 평균임목축적과 비교한 결과 최근린 기반 추정치가 약 $5m^3/ha$ 정도 과소 추정되었지만, 조사시점을 고려하였을 때 상당한 정확도를 나타낸 것으로 평가된다.
Light detection and ranging (LIDAR) is one of the effective technologies for monitoring forest inventory, and importance of forestry is increasing because of its function as the sink of green house gases (GHG). This study aims at development of a methodology for better and more accurate estimation of physical parameters of individual trees by removing sudden drops of LIDAR data within a crown. Our study area is located in Aomori prefecture, the northern part of Honshu Island, with the dominant species of Japanese cedar. The results show practicality of our method in the usage of LIDAR data in the field of forest inventory.
신기후체제에 대응하여 정확한 탄소흡수 및 배출량을 산정하기 위해 토지이용 범주별 통계량 산출은 활동자료로서 매우 중요한 자료이다. 본 연구는 효과적인 토지이용 범주별 판독을 위하여 산림항공사진(이하 FAP)에 딥러닝모델을 적용하여 토지이용 범주별 자동화 판독 분류를 한 후 샘플링기법을 통해 국가단위 통계량을 산출하였다. 딥러닝모델에 적용한 데이터세트(이하, DS)는 국가산림자원조사 고정표본점 위치 기반 FAP의 이미지를 추출하여 훈련데이터세트(이하, 훈련DS)와 시험데이터세트(이하, 시험 DS)로 구분하였다. 훈련 DS는 토지이용 범주별 정의에 따라 이미지별 레이블을 부여하였으며, 딥러닝모델을 학습하고 검증하였다. 검증 시 모델의 학습정확도는 학습 횟수 1500회에서 정확도가 약 89%로 가장 높았다. 학습된 딥러닝모델을 시험DS에 적용한 결과, 이미지 레이블의 판독 분류정확도는 약 90%로 높았다. 샘플링기법을 통해 범주별 분류 결과에 대해 면적을 추정하여 국가통계와 비교한 결과 정합성 또한 높아 향후 LULUCF(Land Use, Land Use Change, Forestry)분야 국가 온실가스 인벤토리 보고서의 활동자료로 활용하기에 충분하다고 판단된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.