• 제목/요약/키워드: forest floor biomass

검색결과 29건 처리시간 0.027초

Influences of Forest Fire on Forest Floor and Litterfall in Bhoramdeo Wildlife Sanctuary (C.G.), India

  • Jhariya, Manoj Kumar
    • Journal of Forest and Environmental Science
    • /
    • 제33권4호
    • /
    • pp.330-341
    • /
    • 2017
  • Tropical forests play a key role for functioning of the planet and maintenance of life. These forests support more than half of the world's species, serve as regulators of global and regional climate, act as carbon sinks and provide valuable ecosystem services. Forest floor biomass and litterfall dynamics was measured in different sites influenced by fire in a seasonally dry tropical forest of Bhoramdeo wildlife sanctuary of Chhattisgarh, India. The forest floor biomass was collected randomly placed quadrats while the litterfall measured by placing stone-block lined denuded quadrat technique. The seasonal mean total forest floor biomass across the fire regimes varied from $2.00-3.65t\;ha^{-1}$. The total litterfall of the study sites varied from $4.75-7.56t\;ha^{-1}\;yr^{-1}$. Annual turnover of litter varied from 70-74% and the turnover time between 1.35-1.43 years. Monthly pattern of forest floor biomass indicated that partially decayed litter, wood litter and total forest floor were differed significantly. The seasonal variation showed that leaf fall differed significantly in winter season only among the fire regimes while the wood litter was found non significant in all the season. This study shows that significant variation among the site due to the forest fire. Decomposition is one of the ecological processes critical to the functioning of forest ecosystems. The decomposing wood serves as a saving account of nutrients and organic materials in the forest floor. Across the site, high fire zone was facing much of the deleterious effects on forest floor biomass and litter production. Control on such type of wildfire and anthropogenic ignition could allow the natural recovery processes to enhance biological diversity. Chronic disturbances do not provide time for ecosystem recovery; it needs to be reduced for ecosystem health and maintaining of the high floral and faunal biodiversity.

Effects of Forest Tending Works on Carbon Storage in a Pinus densiflora Stand

  • Kim, Choon-Sig;Son, Yo-Hwan;Lee, Woo-Kyun;Ha, Yeong-Cheol;Jeong, Jae-Yeob;Noh, Nam-Jin
    • Journal of Ecology and Environment
    • /
    • 제30권4호
    • /
    • pp.281-285
    • /
    • 2007
  • We conducted research to determine the effects of forest tending works (FTW) on forest carbon (C) storage in Korean red pine forests by estimating changes in the quantity and distribution of stored organic C in an approximately 40-year-old red pine stand after FTW. We measured organic C storage (above- and belowground biomass C, forest floor C, and soil C at 50 cm depth) in the Hwangmaesan Soopkakkugi model forest in Sancheonggun, Gyeongsangnam-do before and after the forest was thinned from a density of 908 trees/ha to 367 trees/ha. The total C stored in tree biomass was 69.5 Mg C/ha before FTW and 38.6 Mg C/ha after FTW. The change in total C storage in tree biomass primarily resulted from the loss of 19.9 Mg C/ha stored in stem biomass after FTW. The total C pool in this red pine stand was 276 Mg C/ha before FTW and 245.1 Mg C/ha after FTW. Prior to FTW, 71.5% of the total C pool was stored in mineral soil, 25.2% in tree biomass, and 3.3% in the forest floor, where as after FTW 80.5% of the total C pool was stored in mineral soil, 15.7% in tree biomass and 3.7% in the forest floor. These results suggest that the development of site-specific tending techniques may be required to minimize the loss of tree biomass C storage capacity in red pine stands from FTW.

Distribution of Organic Carbon in Pitch Pine Plantation in Kongju, Korea

  • Han, A-Reum;Mun, Hyeong-Tae
    • Journal of Ecology and Environment
    • /
    • 제32권1호
    • /
    • pp.27-31
    • /
    • 2009
  • Organic carbon (OC) distribution in 32-year-old pitch pine plantation at Mt. Hotae in Kongju, Korea, was studied from August 2007 to July 2008. In order to investigate the OC distribution, OC in plant biomass, litterfall, litter layer on forest floor, and soil within 50cm depth were estimated. The density of P. rigida plantation was 3,200 trees/ha, average DBH was $18.7{\pm}5.53cm$ and average tree height was $11.1{\pm}1.85m$. Organic carbon stored in plant biomass, litterlayer on forest floor and soil in 2008 was 89.46 ton C/ha (46.09%), 4.32 ton C/ha (2.23%) and 100.32 ton C $ha^{-1}$ 50cm-$depth^{-1}$ (51.68%), respectively. Amount of OC returned to forest floor via litterfall was 2.21 ton C $ha^{-1}\;yr^{-1}$. Total amount of OC stored in this P. rigida plantation was 194.1 ton C/ha. Net increase of OC in above- and below-ground biomass in this pitch pine plantation was 4.82 ton C $ha^{-1}\;yr^{-1}$.

Biomass and Carbon Storage Pattern in Natural and Plantation Forest Ecosystem of Chhattisgarh, India

  • Jhariya, Manoj Kumar;Yadav, Dhiraj Kumar
    • Journal of Forest and Environmental Science
    • /
    • 제34권1호
    • /
    • pp.1-11
    • /
    • 2018
  • We studied natural and plantation forest ecosystem of Sarguja in Chhattisgarh, India in order to understand how vegetation biomass, carbon stock and its allocation patterns vary among the sites. For this, stratified random sampling was opted to measure the different layers of vegetation. Wide floral diversity was found in the natural forest site as compared to the teak stand. Overall, 17 tree species found in natural forest comprising 8 families while in the teak stand 6 species were recorded. In understory strata 23 species were recorded (18 herbs and 5 shrubs) in natural forest whereas in teak stand 20 herb species and 3 shrubs were found. Great variation was also seen in the population dynamics of the different vegetation stratum in concerned sites. The sapling, seedling and herb density was found to be highest in natural stand while tree and shrub density was more in teak stand. Results indicated that stand biomass of the natural site was $321.19t\;ha^{-1}$ while in the teak stand it was $276.61t\;ha^{-1}$. The total biomass of tree layer in plantation site was $245.22t\;ha^{-1}$ and natural forest $241.44t\;ha^{-1}$. The sapling, seedling, shrub and forest floor biomass was found highest under natural forest as compared to the teak plantation site. Carbon stock has similar trend as that of biomass accumulation in natural forest and teak stand. Higher biomass accumulation and carbon stock were recorded in the higher girth class gradation of the population structure. Proper efforts are required to manage these diverse ecosystems to obtain higher biomass and sustainable ecological services.

Generation of DEM Data Under Forest Canopy Using Airborne Lidar

  • Woo Choong-Shik;Kim Tae-Guen;Shin Jung-Il;Lee Kyu-Sung
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.512-514
    • /
    • 2005
  • Accurate DEM surface of forest floor is very important to extract any meaningful information regarding forest stand structure, such as tree heights, stand density, crown morphology, and biomass. In airborne lidar data processing, DEM data of forest floor is mostly generated by interpolating those elevation points obtained from last laser returns. In this study, we try to analyze the property of the last laser return under relatively dense forest canopy. Airborne laser data were obtained over the study area in relatively dense pine plantation forest. Two DEM data were generated by using all the points in the last laser returns and using only those points after removing non-ground points. From the preliminary analysis on these DEM data, we found that more than half of points among the last laser returns are actually hit from canopy, branches, and understory vegetation that should be removed before generating the surface DEM data.

  • PDF

Accumulated organic matter, litterfall production, and decomposition tell us the status of litter dynamics in forests

  • Kim, Jae-Geun
    • Journal of Ecology and Environment
    • /
    • 제35권2호
    • /
    • pp.99-109
    • /
    • 2012
  • Litterfall dynamics in forests are assessed by estimating biomass production and decomposition. However, there have been few studies on how litter dynamics impact the health and management of ecosystems. Here, a new approach to measure and assess ecosystem function is presented based on conventional methods using littertraps, litterbags, and the mass on the forest floor. To assess the status of litter dynamics, the decay rate (k) was estimated from a litterbag experiment, and removal rates ($k_i$) were determined from mass balance on the forest floor at 21 sites on three mountains in South Korea. The $k_3$ (organic mass ratio of $O_i$ and $O_e+O_a$ + A horizons in November) values in an equilibrium state in South Korea were within the range of $k{\pm}0.174$ when considering the annual variation of litterfall production. This study also suggests that sampling sites for these types of studies should be in the middle, not at the ends, of steady slopes on the forest floor.

Forest Floor Biomass, Litterfall and Physico-chemical Properties of Soil along the Anthropogenic Disturbance Regimes in Tropics of Chhattisgarh, India

  • Oraon, P.R.;Singh, Lalji;Jhariya, Manoj Kumar
    • Journal of Forest and Environmental Science
    • /
    • 제34권5호
    • /
    • pp.359-375
    • /
    • 2018
  • The long term ecological effects have been reported in natural forest ecosystem due to various anthropogenic disturbances, especially in tropics of the world. The present study was carried out in the sanctuary area of central India to assess the changes on litter biomass, litterfall pattern and soil attributes under different disturbance regimes. The study area includes three forest circles i.e., Bhoramdeo, Jamunpani and Salehwara each comprising three disturbances regimes viz., high, medium and low severity of biotic pressure. A noticeable variation and impact were recorded in different sites. The impact varies significantly from least disturbed sites to highly disturbed sites across the circle and among different disturbances level. The seasonal mean total forest floor biomass across the forest circles varied from 2.18 to $3.30t\;ha^{-1}$. It was found highest under lightly disturbed site and lowest under heavily disturbed site. Total litterfall varied from 5.11 to $7.06t\;ha^{-1}\;yr^{-1}$ across the forest circle. Lowest litterfall was recorded at heavily disturbed site while highest in lightly disturbed site. Annual turnover of litter varied from 69-73% and the turnover time ranged between 1.37-1.45 years. The turn over time was higher for heavily disturbed site and lower for lightly disturbed site. The heavily disturbed site of all the circle showed the sandy loam soil texture, whereas moderately and lightly disturbed site comprised of sandy loam, sandy clay loam and clay soil texture, respectively. The bulk density decreases from heavily disturbed site to lightly disturbed site and the pH of soils ranged from 5.57-6.89 across the circle. Across the circle the total soil nitrogen ranged from 0.12-0.21%, phosphorus from 10.03-24.00 kg and Potassium from $139.88-448.35kg\;ha^{-1}$, respectively. Our results demonstrate that anthropogenic disturbances regime significantly influences forest floors in terms of mass, composition and dynamics along with litterfall rate and soil properties.

Budget and distribution of organic carbon in Taxus cuspidata forest in subalpine zone of Mt. Halla

  • Jang, Rae-Ha;Jeong, Heon-Mo;Lee, Eung-Pill;Cho, Kyu-Tae;You, Young-Han
    • Journal of Ecology and Environment
    • /
    • 제41권1호
    • /
    • pp.19-28
    • /
    • 2017
  • Background: In order to investigate organic carbon distribution, carbon budget, and cycling of the subalpine forest, we studied biomass, organic carbon distribution, litter production, forest floor litter, accumulated soil organic carbon, and soil respiration in Taxus cuspidata forest in Halla National Park from February 2012 to November 2013. Biomass was calculated by using allometric equation and the value was converted to $CO_2$ stocks. Results: The amount of plant organic carbon was $13.60ton\;C\;ha^{-1}year^{-1}$ in 2012 and $14.29ton\;C\;ha^{-1}year^{-1}$ in 2013. And average organic carbon introduced to forest floor through litter production was $0.71ton\;C\;ha^{-1}year^{-1}$. Organic carbon distributed in forest floor litter layer was $0.73ton\;C\;ha^{-1}year^{-1}$ on average and accumulated organic carbon in soil was $51.13ton\;C\;ha^{-1}year^{-1}$ on average. In 2012, Amount of released $CO_2$ from soil to atmosphere was 10.93 ton $CO_2ha^{-1}year^{-1}$. Conclusions: The net ecosystem production based on the difference between net primary production of organic carbon and soil respiration was $-1.74ton\;C\;ha^{-1}year^{-1}$ releasing more carbon than it absorbed.

리기다소나무와 낙엽송(落葉松) 인공조림지(人工造林地)의 지상부(地上部) 생체량(生體量), 질소(窒素)와 인(燐)의 분포(分布) 및 낙엽(落葉)에 관한 연구(硏究) (Aboveground Biomass, N and P Distribution, and Litterfall in Pinus rigida and Larix leptolepis Plantations)

  • 김종성;손요환;임주훈;김진수
    • 한국산림과학회지
    • /
    • 제85권3호
    • /
    • pp.416-425
    • /
    • 1996
  • 경기도 양평지역의 사질식양토 위에 인접하여 생육하고 있는 37년생 리기다소나무와 낙엽송 인공조림지에서 지상부 식생의 생체량, 임목과 낙엽층 및 지표로부터 20cm 깊이까지의 토양내 질소(N)와 인(P)의 분포 그리고 낙엽량 등을 측정하였다. 리기다소나무와 낙엽송의 지상부 임목의 생체량은 각각 138.2t/ha와 127.2t/ha로 수종간의 차이는 없었다. 수피와 엽내 N의 농도는 낙엽송에서 리기다소나무 보다 높았다. 하층식생이 지상부 식생의 총생체량에 차지하는 비율은 2% 이하이었으나, 양료량에서는 12.0%까지 차지하여 양료의 주요 분포장소로 나타났다. 토양내 N과 P의 농도는 낙엽송 임지에서 리기다소나무 임지에 비해 높게 나타났으며 생태계내 총N의 함량은 낙엽송에서 5,579kg/ha로 리기다소나무의 4,147kg/ha보다 많았다. 연간 낙엽량은 리기다소나무에서 6,020kg/ha로 낙엽송의 4,191kg/ha보다 많았으나 낙엽중 엽내 N의 함량은 낙엽송에서 2배정도 많게 나타났다. 본 연구결과 수종이 산림생태계내 양료의 분포와 순환에 중요한 영향을 미치고 있음이 나타났다.

  • PDF

Changing C-N Interactions in the Forest Floor under Chronic N Deposition: Implications for Forest C Sequestration

  • Park, Ji-Hyung
    • Journal of Ecology and Environment
    • /
    • 제31권3호
    • /
    • pp.167-176
    • /
    • 2008
  • Atmospheric N deposition has far-reaching impacts on forest ecosystems, including on-site impacts such as soil acidification, fertilization, and nutrient imbalances, and off-site environmental impacts such as nitrate leaching and nitrous oxide emission. Although chronic N deposition has been believed to lead to forest N saturation, recent evidence suggests that N retention capacity, particularly in the forest floor, can be surprisingly high even under high N deposition. This review aims to provide an overview of N retention processes in the forest floor and the implications of changing C-N interactions for C sequestration. The fate of available N in forest soils has been explained by the competitive balance between tree roots, soil heterotrophs, and nitrifiers. However, high rates of N retention have been observed in numerous N addition experiments without noticeable increases in tree growth and soil respiration. Alternative hypotheses have been proposed to explain the gap between the input and loss of N in N-enriched, C-limited systems, including abiotic immobilization and mycorrhizal assimilation, both of which do not require additional C sources to incorporate N in soil N pools. Different fates of N in the forest floor have different implications for C sequestration. N-induced tree growth can enhance C accumulation in tree biomass as observed across temperate regions. C loss from forests can amount to or outweigh C gain in N-saturated, declining forests, while another type of 'C-N decoupling' can have positive or neutral effects on soil C sequestration through hampered organic matter decomposition or abiotic N immobilization, respectively.