• Title/Summary/Keyword: forest fire spread rate

Search Result 28, Processing Time 0.075 seconds

Forest Fire Direction and Spread Characteristics by Field Investigations (사례 조사를 통한 산불 방향 및 확산 특성)

  • Lee, Byung-Do;Koo, Kyo-Sang;Lee, Myung-Bo
    • Fire Science and Engineering
    • /
    • v.23 no.5
    • /
    • pp.96-102
    • /
    • 2009
  • Forest fire ignition and spread characteristics are needed as basic data in fire management. Slope aspect of ignition point, spread direction, and wind direction at that time were analyzed and regression equations were proposed for predicting burned area, fire perimeter, head spread rate, and flank spread rate using combustion time using 101 forest fires broken out between 2007 and 2009 spring. 57% forest fires of investigated numbers were ignited in south, southwest, and southeast aspects and 68% of forest fires were spreaded to east, southeast, and northeast influenced by westerly wind. About 11.8ha forest was burned and 0.5km fire perimeter increase was predicted per hour. Head and flank spread rate were calculated 0.13km and 0.05km, respectively.

Analyzing Spread Rate of Samcheok Forest Fire Broken out in 2000 Using GIS (GIS 응용(應用)에 의한 2000년(年) 삼척(三陟) 산불의 확산속도(擴散速度) 분석(分析))

  • Lee, Byung-Doo;Chung, Joo-Sang;Kim, Hyung-Ho;Lee, Si-Young
    • Journal of Korean Society of Forest Science
    • /
    • v.90 no.6
    • /
    • pp.781-787
    • /
    • 2001
  • The spread rate of forest fire was analyzed on Samcheok forest fire that broke out on April 7, 2000 in Kunduck-Myun, Samcheok-City, Kangwon-Province and lasted for about 9 days. The spatial database including topography, overstory species distribution, micro-climate, daily fire front lines for the area was built using GIS and the daily spread pattern was investigated to determine a multiple regression equation to estimate forest fire spread rate. The results of the investigation showed that, on the first day, the forest fire spreaded out extremely fast up to 12.3m/min at about 10 a.m. until noon. After that, the forest fire spread rate fluctuated and slowed down as low as below 1m/min and quenched on April 15. The daily area-based spread rate along the fire spread line got to the peak of about 5,700ha on April 11, of which spread rates were recorded as 2.84m/min in the first half and 1.10m/min in the second half. Also, it was found that slope aspect, wind velocity and % area distribution of Pinus densiflora are the major factors affecting the spread rate of forest fire in this area.

  • PDF

Effect Evaluation of Forest Fire on Governor Station (정압기지에 대한 산불화재 영향평가)

  • Jang, Seo-Il;Char, Soon-Chul;Kang, Kyung-Sik
    • Journal of the Korea Safety Management & Science
    • /
    • v.9 no.2
    • /
    • pp.49-57
    • /
    • 2007
  • This Study is to suggest a method of effect evaluation of forest fire on governor station in shrub land. Theoretically, to evaluate effects of forest fire, it is combined that Spread Rate of Forest Fire, Flame Model, and Thermal Radiation Effects Model; i.e. a travel time of forest fire is calculated by Spread Rate of Forest Fire, fire-line intensity is calculated by Flame Model, and effects of fire-line intensity is affected by Thermal Radiation Effects Model. With the aforementioned method, we could carry out the effect evaluation of forest fire on governor station in shrub land and could distinguish scenarios to need protection plan from all scenarios.

Spatial Patterns of Forest Fires between 1991 and 2007 (1991년부터 2007년까지 산불의 공간적 특성)

  • Lee, Byung-Doo;Lee, Myung-Bo
    • Fire Science and Engineering
    • /
    • v.23 no.1
    • /
    • pp.15-20
    • /
    • 2009
  • For the effective management of forest fire, understanding of regional forest fire patterns is needed. In this paper, forest fire ignition and spread characteristics were analyzed based on forest fire statistics. Fire occurrences, burned area, rate of spread, and burned area per fire between 1991 and 2007 were parameterized for the cluster analysis, which results were displayed using GIS to detect spatial patterns of forest fire. Administrative districts such as cities and counties were classified into 5 clusters by fire susceptibility. Metropolitan areas had fire characteristics that were infrequent, slow rate of spread, and small burned area. However, 4 cities and counties showing fast rate of spread, and large burned area, in the eastern regions of Taeback Mountain range, were the most susceptible areas to forest fire. The next vulnerable cities and counties were located in the West and South Coast area.

Analysis of Forest Fire Spread Rate and Fire Intensity by a Wind Model (모형실험에 의한 풍속변화에 따른 산불의 확산속도와 강도 분석)

  • 채희문;이찬용
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.5 no.4
    • /
    • pp.213-217
    • /
    • 2003
  • Forest fire spread and intensity were modeled as a function of wind and fuel. Spread rate and intensity of forest fire were related to weight and thickness of forest fuel beds and to wind speed. Forest fire spread rate and fire intensity were differentiated according to wind speed. Rapid wind speed causes a faster forest fire spread rate and greater fire intensity than does slow wind speed. Relative burning time of the fire from beginning to end in the model was 161 sec at a wind speed of 0.5 m/sec and 146 sec at 1m/sec on the model. Average forest lire spread rate was 0.014 m/sec at a wind speed of 0.5 m/sec and 0.020 m/sec at 1m/sec. Average fire intensity was 0.183 ㎾/m at a wind speed of 0.5 m/sec, 0.259 ㎾/m at 1m/sec. Fire intensity was greater when forest fire spread rate was rapid.

A Numerical Study of Flame Spread of A Surface Forest Fire (지표화 산불의 화염전파 수치해석)

  • Kim, Dong-Hyun;Lee, Myung-Bo;Kim, Kwang-Il
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.80-83
    • /
    • 2008
  • The characteristics of the spread of a forest fire are generally related to the attributes of combustibles, geographical features, and meteorological conditions, such as wind conditions. The most common methodology used to create a prediction model for the spread of forest fires, based on the numerical analysis of the development stages of a forest fire, is an analysis of heat energy transmission by the stage of heat transmission. When a forest fire breaks out, the analysis of the transmission velocity of heat energy is quantifiable by the spread velocity of flame movement through a physical and chemical analysis at every stage of the fire development from flame production and heat transmission to its termination. In this study, the formula used for the 1-dimensional surface forest fire behavior prediction model, derived from a numerical analysis of the surface flame spread rate of solid combustibles, is introduced. The formula for the 1-dimensional surface forest fire behavior prediction model is the estimated equation of the flame spread velocity, depending on the condition of wind velocity on the ground. Experimental and theoretical equations on flame duration, flame height, flame temperature, ignition temperature of surface fuels, etc., has been applied to the device of this formula. As a result of a comparison between the ROS(rate of spread) from this formula and ROSs from various equations of other models or experimental values, a trend suggesting an increasing curved line of the exponent function under 3m/s or less wind velocity condition was identified. As a result of a comparison between experimental values and numerically analyzed values for fallen pine tree leaves, the flame spread velocity reveals has a error of less than 20%.

  • PDF

Spread Speed of Forest Fire based on Slope (경사에 따른 산불의 확산속도)

  • An, Sang-Hyun;Shin, Young-Chun
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.4
    • /
    • pp.75-79
    • /
    • 2008
  • As Information Technology developed, Information requirement has been went higher. In the field of GIS(Geographic Information System) more information is processed more quickly and accurately. Especially, quick analysis of forest fire information (topography, ignition point, weather condition, etc.) over a wide area is essential in order to minimize victim, environmental damage, and economical damage, decide course of evacuating, estimate a fire spread course, and attack resource arrangement. We determined a fire spread distance at each unit time through an experiment with various slope degrees and distinction of flat, upslope and downslope. For the tests on the upslope, as the slope increased, the rate of spread increased. On the downslope in contrast with the upslope, as the slope increased, the rate of spread decreased. We analyzed a spread rate of forest fire on each slope as the method classified upslope(+) and downslope(-) using the results obtained from the experiment. Consequently, the proposed method is able to be used to effectively support the attack of forest fire by providing accurate predictions of fire spread.

Comparison a Forest Fire Spread variation according to weather condition change (기후조건 변화에 따른 산불확산 변화 비교)

  • Lee, Si-Young;Park, Houng-Sek
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.490-494
    • /
    • 2008
  • We simulated a forest fire which was occurred in Yangyang area on 2005 and compared a results between two different weather conditions(real weather condition and mean weather condition since 1968) using FARSITE, which is a forest fire spread simulator for preventing and predicting fire in USDA. And, we researched a problem in the transition for introducing, so we serve the basic method for prevention and attacking fire. In the result, severe weather condition on 2005 effected a forest fire behavior. The rate of spread under real weather condition was about 4 times faster than mean weather condition. Damaged area was about 10 time than mean weather condition. Therefore, Climate change will make a more sever fire season. As we will encounter to need for accurate prediction in near future, it will be necessary to predict a forest fire linked with future wether and fuel condition.

  • PDF

Slope and Forest Fuel Effect on Spreading of Forest Fire (산불 확산에 영향을 미치는 임지내 산림연료와 경사도에 관한 연구)

  • 채희문;이찬용
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.5 no.3
    • /
    • pp.179-184
    • /
    • 2003
  • This study investigated the relationship of fuel weight and depth together with slope on the spread of forest fire. Fire spread was faster on the greater slope in forested land. Fire had a greater spread rate with lighter fuel weight. The thickness of the fuel bed and forest fire spread rate were not related. The fire spread rate was closely related to the slope and weight of the fuel bed (significant at 0.01, 0.05, respectively). The thickness of the fuel bed was not significant (0.05).

A Study on Fire Spreading Prediction Program by Flow Field Analysis (유동장(流動場) 해석(解析)을 통한 산불확산예측(擴散豫測) 프로그램의 개발(開發))

  • Kim, Eng-Sik;Lee, Si-Young;Lim, Hoe-Jie;Kim, Hong;Song, Jong-Hun;Kim, Soo-Young
    • Journal of Korean Society of Forest Science
    • /
    • v.87 no.4
    • /
    • pp.528-534
    • /
    • 1998
  • There are many parameters in prediction of forest fire spread. Among others wind and slope factors are considered to be the important parameters in spread of forest fire. Generally, all the inclined planes with same slopes can not have the same wind velocity in complex mountain area. But this effect has been disregarded in complex geometry. In this paper, wind values which have velocity and direction is calculated by applying computational fluid dynamics to the forest geometry. These results are applied for forest fire spreading algorithm with experimental Korean ROS(Rate Of Spread). Finally, the comparison between the simulation and the real forest fire has correspondence about 90%.

  • PDF