• Title/Summary/Keyword: forest ecosystem

Search Result 905, Processing Time 0.027 seconds

The Response of Nitrogen Deposition to Methane Oxidation Availability and Microbial Enzyme Activities in Forest Soils

  • Jang, In-Young;Lee, Hyoung-Min;Kang, Ho-Jeong
    • Environmental Engineering Research
    • /
    • v.15 no.3
    • /
    • pp.157-161
    • /
    • 2010
  • Forest soils are often nitrogen-limited, and nitrogen input to forest soils can cause substantial changes in the structure and functions of a soil ecosystem. To determine the effects of nitrogen input on methane oxidation and the microbial enzyme activities, manipulation experiments were conducted using nitrogen addition to soil samples from Mt. Jumbong. Our findings suggested that the addition of nitrogen to the soil system of Mt. Jumbong did not affect the microbial enzyme activities. Conversely, the addition of nitrogen affected the rate of methane oxidation. Inorganic nitrogen in soils can inhibit methane oxidation via several mechanisms, such as substrate competition, toxic effects, and competition with other microbes, but the inhibitory effects are not always the same. In this research, seasonal changes were found to produce different inhibitory factors, and these different responses may be caused from differences in the methantrophic bacteria community structure.

Distribution patterns of specice populations along the environmental gradients in mt. moak provincial park, korea (環境傾度에 의한 母岳山 植物個體群의 分布類型)

  • Kim, Jeong-Un;Yim, Yang-Jai
    • The Korean Journal of Ecology
    • /
    • v.15 no.4
    • /
    • pp.365-375
    • /
    • 1992
  • The environmental gradient analyses were applied for the distribution patterns of species populations in mt. moak provincial park in korea. The species populations were sequentially ordered along the environmental gradients such as soil moisture, soil ph, soil organic matter content and elevation and were grouped into seven ecological groups by the two-dimensional analyses of temperature-moisture gradient : zelkova serrata group on mesic-lower parts near the streames and well drained stony slopes, carpinus tschonoskii group on mesic-middle parts, quercus acutissima group on lower parts destroyed by human activities, quercus variabilis group on xeric-middle parts, quercus serrata group on xeric-upper middle parts, quercus mongolica group on xeric-upper parts and pinus densiflora group on xeric-rock ridge lines, hillocks and lower parts interfered by human. Four forest vegetation types, zelkova forest dominated by the c. tschonoskii group on mesic-middle parts, oak forest dominated by the groups of q. acutissima, q. variabilis, q. serrata and q. mongolica on xeric sites and pine forest dominated by the p. densiflora group on dry and poor sites, were separated in mosaic chart by the two-dimensional analysis.

  • PDF

Accumulated organic matter, litterfall production, and decomposition tell us the status of litter dynamics in forests

  • Kim, Jae-Geun
    • Journal of Ecology and Environment
    • /
    • v.35 no.2
    • /
    • pp.99-109
    • /
    • 2012
  • Litterfall dynamics in forests are assessed by estimating biomass production and decomposition. However, there have been few studies on how litter dynamics impact the health and management of ecosystems. Here, a new approach to measure and assess ecosystem function is presented based on conventional methods using littertraps, litterbags, and the mass on the forest floor. To assess the status of litter dynamics, the decay rate (k) was estimated from a litterbag experiment, and removal rates ($k_i$) were determined from mass balance on the forest floor at 21 sites on three mountains in South Korea. The $k_3$ (organic mass ratio of $O_i$ and $O_e+O_a$ + A horizons in November) values in an equilibrium state in South Korea were within the range of $k{\pm}0.174$ when considering the annual variation of litterfall production. This study also suggests that sampling sites for these types of studies should be in the middle, not at the ends, of steady slopes on the forest floor.

Preliminary Study on Naturalness of Korean Fir (Abies holophylla) Stand in Mt. Sorak (설악산 전나무 고목림의 자연성 판단을 위한 기초연구)

  • 윤영일
    • Korean Journal of Environmental Biology
    • /
    • v.20 no.4
    • /
    • pp.287-293
    • /
    • 2002
  • Natural forest stand plays a very important role to understand the forest ecosystem in Korea, in which there is no ancient forests aye left. Several old growth Korean fir stands were studied to determine their naturalness. Internationally accept-ed criteria for virgin or natural forests were used and the changes in several stages by stand dynamics were applied. Although the areas survey is limited in size, it was discovered that they clearly represent certain characteristics of naturalness. This study and collected data will hopefully be the starting point for the further studies for naturalness of forest in Korea in the future.

On Using the Eddy Covariance Method to Study the Interaction between Agro-Forest Ecosystems and the Atmosphere (농림생태계와 대기간의 상호 작용 연구를 위한 에디 공분산 방법의 사용에 관하여)

  • Choi Taejin;Kim Joon;Yun Jin-il
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.1 no.1
    • /
    • pp.60-71
    • /
    • 1999
  • The micrometeorological tower flux network is the cornerstone of the global terrestrial vegetation monitoring. The eddy covariance technique used for tower fluxes is derived from the conservation of mass and is most applicable for steady-state conditions over flat, extended, and uniform vegetation. This technique allows us to obtain surface fluxes of energy budget components, greenhouse and trace gases, and other pollutants. The quality-controlled flux data are invaluable to validate various models with temporal scales ranging from minutes to years and spatial scales ranging from a few meters to hundreds of kilometers. In this paper, we review the theoretical background of this important eddy covariance technique, examine the measurement criteria and corrections, and finally suggest some measurement strategies that may facilitate coordinated flux measurements among different disciplines and provide a strong infrastructure for the global flux network.

  • PDF

Analysis & Planning;The Beijing Olympic Forest Park

  • Jie, Hu;Yi-Xia, Wu;Lu-Shan, Lu
    • Proceedings of the Korean Institute of Landscape Architecture Conference
    • /
    • 2007.10b
    • /
    • pp.8-14
    • /
    • 2007
  • The Beijing Olympic Forest Park lies at the north end of the 2008 Olympic Plan, "Axis to Nature," and terminates the Olympic axis with a model ecosystem and scenic vistas. The park is a combination of urban green lung, ecological buffer, traditional Chinese park, Olympic park, native forest, and urban retreat. Chinese traditional park concepts, modern landscape architecture, and ecological techniques are merged into one project for the 29th Olympic Games and the citizens of Beijing.

  • PDF

Climate Change Impact on Korean Forest and Forest Management Strategies (기후변화가 한국 산림에 미치는 영향과 관리 전략)

  • Kim, Moonil;Yoo, Somin;Kim, Nahui;Lee, Wona;Ham, Boyoung;Song, Cholho;Lee, Woo-Kyun
    • Korean Journal of Environmental Biology
    • /
    • v.35 no.3
    • /
    • pp.413-425
    • /
    • 2017
  • This manuscript describes the relationship between climate change and forest growth, forest species, carbon stocks, and tree mortality. 1) In the aspect of forest growth, the growth of major coniferous species, including Pinus densiflora, had a negative correlation with temperature. On the other hand, major deciduous oak species, including Quercus variabilis and Quercus mongolica, had a positive correlation with temperature. 2) When considered in the aspect of the forest species distribution, various models commonly showed a decrease in the distribution of coniferous species and an increase in oak species due to climate change in the medium to long term. 3) From the carbon stock perspective, there was a difference in the estimation according to the status of forest management. Most of Korean forests will mature to become over-matured forest after year 2030 and are estimated to produce approximately 410 million ton forest biomass until 2090 with the current cutting regulations for sustainable forest management announced by the Korean Forest Service. 4) In the forest mortality, the mortality rate of the major coniferous species showed a clear tendency to increase higher temperatures while it decreased for the oak species with no verification of statistical significance. Moreover, the mortality of the subalpine coniferous species was projected to progress rapidly. considering the overall impacts described above, there should be a management strategy for coniferous species that are relatively vulnerable to climate change. Moreover, a sustainable forest plan in the aspect of ecosystem services, carbon sequestration and storage, which is linked to global issues such as Sustainable Development Goals, ecosystem services and negative emission.

Vegetation Structure of Secheon Valley Area and Forest Vegetation Types in Mt. Sikjang (식장산 산림식생유형과 세천계곡부의 식생구조)

  • Hwang, Seon-Mi;Yun, Chung-Weon
    • Korean Journal of Environmental Biology
    • /
    • v.25 no.3
    • /
    • pp.249-259
    • /
    • 2007
  • This study was carried out the analysis of forest vegetation structure using the phytosociological methods by Braun-Blanquet from April to November in 2006. The results were summarized as follows. The forest vegetation was classified into 23 communities and 3 forest ecosystem types such as slope forest type, valley forest type and artificial forest type. By the actual vegetation map, Quercus mongolica forest was widely distributed in the area and Pinus densiflora forest and Quercus variabilis forest in the southern parts of the slope and valley forest mainly in valley area, respectively. The importance value in the Q. mongolica forest and artificial forest was absolutely high for the species dominated in tree layer. The typical valley species of Lindera erythrocarpa and Styrax japonica were abundantly occupied in the all layers. Species diversity indices of Alnus hirsta forest was the lowest as 0.2191, and that of valley forest was about 0.9, the highest among the all forest types.

Application of Landscape Ecology to Ecological Restoration

  • Hong, Sun-Kee;Kang, Ho-jeong;Kim, Eun-Shik;Kim, Jae-Geun;Kim, Chang-Hoe;Lee, Eun-Ju;Lee, Jae-Chun;Lee, Jeom-Sook;Choung, Yeon-sook;Choung, Heung-Lak;Ihm, Byun-Sun
    • The Korean Journal of Ecology
    • /
    • v.27 no.5
    • /
    • pp.311-323
    • /
    • 2004
  • To date, restoration ecology has focused on local areas, particularly small-scale ecosystems. As such, restoration ecology has been applied to areas with clear boundaries, such as roads, abandoned mines, wetlands, and forest ecosystems. However, those involved in these restoration efforts, due to their tendency to implement comprehensive plans to change the landscape structure, and their mismanagement of the restoration process, have more often than not wound up weakening the ecological functions of surrounding ecosystems, and in further degrading the ecosystem which they were trying to restore. To resolve these problems and restore a comparatively large-scale region, methods to assess the impact of such restoration efforts on surrounding ecosystems must be developed. These include expanding the scale of restoration efforts; in other words, moving from the local to the landscape scale. As a conclusion, practice of ecological restoration is increasingly moving towards landscape scale in order to deal with these problems.

Assessment of polluted factors in aquatic environment using near infrared spectroscopy

  • Norio, Sugiura;Zhang, Yansheng;Wei, Bin;Zhang, Zhenya;Isoda, Hiroko;Maekawa, Takaaki
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1272-1272
    • /
    • 2001
  • Eutrophication processes of aquatic environment are strictly correlated with the concentration levels of nitrogen, phosphorous, organic matter and biological parameters such as phytoplankton and chlorophylla (Tremel, 1996; Burns et al., 1997; Young et al. 1999; Wei et al.,2000). Accordingly, the monitoring and evaluation of these factors will provide useful information about the health of aquatic ecosystem. However, the traditional types of auqatic chemistry analysis and ecological monitoring of phytoplankton are time-consuming, costly, and further resulting in secondary pollution due to the use of reagents. NIR (near-infrared) spectroscopy, as a rapid, non-destructive, little sample preparation and reagents-free technology (Hildrum et al., 1992), has been extensively applied to the characterization of food (Osborne and Fearn, 1988), pharmaceutical (Morisseau and Rhodes, 1995) and textile materials (Clove et al.,2000). Currently, NIR technology has been used indirectly in inferring lake water chemistry by two approaches, suspended (Malley et al., 1996) or seston (Dabakk et al., 1999), and sediments (Korsman et al., 1992; Malley et al., 1999). In addition, the evaluation of trophic state and the identification of the key factors contributed to the trophication are the key step to restore the damaged aquatic environment. Moreover, an understanding of the factors, which regulate the algal proliferation, is crucial to the successful management of aquatic ecosystem. In the paper, NIR technology will be used to study the environmental factors affecting the algal proliferation in combination with the trophic state index and diversity index. This novel developed system can be applied in monitoring and evaluating allopathic water environment and provide real time information services for the aquatic environment management.

  • PDF