• Title/Summary/Keyword: forest dynamics

Search Result 232, Processing Time 0.026 seconds

Climate Change Impacts on Forest Ecosystems: Research Status and Challenges in Korea (기후변화에 따른 산림생태계 영향: 우리나라 연구현황과 과제)

  • Lim Jong-Hwan;Shin Joon-Hwan;Lee Don-Koo;Suh Seung-Jin
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.8 no.3
    • /
    • pp.199-207
    • /
    • 2006
  • Recent global warming seems to be dramatic and has influenced forest ecosystems. Changes in phonology of biota, species distribution range shift and catastrophic climatic disasters due to recent global warming have been observed during the last century. Korean forests located mainly in the temperate zone also have been experienced climatic change impacts including shifting of leafing and flowering phonology, changes in natural disasters and forest productivity, However, little research has been conducted on the impact of climate change on forest ecosystems in Korea which is essential to assess the impact and extent of adaptation. Also there is a shortage in basic long-term data of forest ecosystem processes. Careful data collection and ecological process modeling should be focused on characteristic Korean forest ecosystems which are largely complex terrain that might have hindered research activities. An integrative ecosystem study which covers forest dynamics, biological diversity, water and carbon flux and cycles in a forest ecosystem and spatial and temporal dynamics modeling is introduced. Global warming effects on Korean forest ecosystems are reviewed. Forestry activity and the importance of forest ecosystems as a dynamic carbon reservoir are discussed. Forest management options and challenges for future research, impact assessment, and preparation of mitigating measures in Korea are proposed.

Long-term Ecological Research Programme in Forestry Research Institute, Korea

  • Oh, Jeong-Soo;Shin, Joon-Hwan;Lim, Jong-Hwan
    • The Korean Journal of Ecology
    • /
    • v.23 no.2
    • /
    • pp.131-134
    • /
    • 2000
  • Forest vegetation in Korea can be largely divided into warm temperate, cool temperate and frigid forest zone. The cool temperate forest zone of them occupies the largest part of the Korean peninsula and it is generally divided into three subdivisions such as northern, central and southern subzone. The Forestry Research Institute established three long-term ecological research sites at Kwangnung Experiment Forest in the central subzone of the cool temperate forest zone, at the Mt. Kyebangsan Forest in the northern subzone of the cool temperate forest zone. and at the Mt. Keumsan Forest in the warm temperate forest zone. The objectives of long-term ecological research in the Forestry Research Institute, Korea are to study long-term changes of the forest ecosystems in energy fluxes, water and nutrient cycling, forest stand structure, biological diversity, to quantify nutrient budgets and fluxes among forest ecosystem compartments and to integrate ecological data with a GIS - assisted model. To achieve the objectives, forest stand dynamics. environmental changes in soil properties, stream water quality, nutrient cycling, air pollution and biological diversity have been investigated and plant phonology as an indicator of climate change has been monitored in the LTER sites.

  • PDF

Forest Stand Structure, Site Characteristics and Carbon Budget of the Kwangneung Natural Forest in Korea (광릉 활엽수천연림의 산림식생구조, 입지환경 및 탄소저장량)

  • Jong-Hwan Lim;Joon Hwan Shin;Guang Ze Jin;Jung Hwa Chun;Jeong Soo Oh
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.5 no.2
    • /
    • pp.101-109
    • /
    • 2003
  • The study area, Kwangneung Experiment Forest (KEF) is located on the west-central portion of Korean peninsula and belongs to a cool-temperate broadleaved forest Bone. At the old-growth deciduous forest near Soribong-peak (533.1 m) in KEF, we have established a 1 ha permanent plot ($100m{\times}100m$) and a flux tower, and the site was registered as a KLTER(Korean long-term ecological research network) and DK site of KoFlux. In this site, we made a stemmap of trees and analyzed forest stand structure and physical and chemical soil characteristics, and estimated carbon budgets by forest components (tree biomass, soils, litter and so on). Dominant tree species were Quercus serrata and Carpinus laxiflora, and accompanied by Q. aliena, Carpinus cordata, and so on. As a result of a field survey of the plot, density of the trees larger than 2 cm in DBH was 1,473 trees per ha, total biomass 261.2 tons/ha, and basal area $28.0m^2$/ha. Parent rock type is granite gneiss. Soil type is brown forest soil (alfisols in USDA system), and the depth is from 38 to 66 cm. Soil texture is loam or sandy loam, and its pH was f개m 4.2 to 5.0 in the surface layer, and from 4.8 to 5.2 in the subsurface layer. Seasonal changes in LAI were measured by hemispherical photography at the 1.2 m height, and the maximum was 3.65. And the spatial distributions of volumetric soil moisture contents and LAIs of the plot were measured. The carbon pool in living tree biomass including below ground biomass was 136 tons C/ha, and 5.6 tons C/ha is stored in the litter layer, and about 92.0 tons C/ha in the soil to the 30 cm in depth. Totally more than about 233.6 tons C/ha was stored in DK site. These ground survey and monitoring data will give some important parameters and validation data for the forest dynamics models or biogeochemical dynamics models to predict or interpolate spatially the changes in forest ecosystem structure and function.

Atmospheric Deposition of Pine Pollen in Canada and Korea

  • Lee, Eun-Ju;Cho, Yong-Joo;Thomas Booth
    • Proceedings of The Korean Society of Agricultural and Forest Meteorology Conference
    • /
    • 2001.06a
    • /
    • pp.77-80
    • /
    • 2001
  • In many temperate forest ecosystems, large quantities of pine pollen are deposited over a short period in early summer (Doskey and Ugoagwu 1989). Because pollen grains decompose rapidly and have macronutrient concentrations, the pollen rain may be an important component of nutrient dynamics in natural terrestrial and aquatic ecosystems (Stark 1972).(omitted)

  • PDF

Carbon and Nitrogen Dynamics of Wood Stakes as Affected by Soil Amendment Treatments in a Post-Fire Restoration Area (산불 훼손 복원지 내 토양개량제 처리가 Wood stakes의 탄소 및 질소 동태에 미치는 영향)

  • Park, Seong-Wan;Baek, Gyeongwon;Byeon, Hee-Seop;Kim, Yong Suk;Kim, Choonsig
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.20 no.4
    • /
    • pp.357-365
    • /
    • 2018
  • This study was carried out to evaluate the weight loss rates, carbon and nitrogen dynamics of wood stakes following soil amendment treatments (CLB: compound fertilizer + lime + biochar; LB: lime + biochar) in a post-fire restoration area, Ulsan Metropolitan city, southern Korea. Soil amendments in the fire-disturbed area were applied to two-times (Mar. and Jun. 2015, 2016) during the study period. Wood stakes on Mar. 2015 were buried at a top 15cm of mineral soil in two soil amendment and control treatments of Liriodendron tulipifera, Prunus yedoensis, Quercus acutissima, Pinus thunbergii plantations and an unplanted area in the post-fire restoration area. Wood stakes were collected at Oct. 2015, Mar. 2016 and Oct. 2016 to measure weight loss rates, organic carbon and nitrogen concentrations. Weight loss rates of wood stakes were not significantly affected by soil amendment treatments. However, remaining carbon of wood stakes were lowest in the control treatment (43.7%), followed by the CLB (71.3%) and the LB (71.6%) treatments. Remaining nitrogen of wood stakes was less in the control treatment (29.7%) compared with the LB treatment (52.6%). The results indicate that carbon and nitrogen mineralization of wood stakes in post-fire restoration area were delayed by soil amendment treatments.

Structure and Dynamics of Quercus acuta, Quercus acutissima and Pinus rigida Forests in Wando Island (완도지역 붉가시나무림, 상수리나무림, 리기다소나무림의 구조와 동태)

  • Park, In-Hyeop
    • Korean Journal of Environment and Ecology
    • /
    • v.26 no.3
    • /
    • pp.406-411
    • /
    • 2012
  • Structure and dynamics for three type forests of Quercus acuta, Quercus acutissima and Pinus rigida forests were studied in Wando island, Korea. Quercus acuta and Quercus acutissima forests were natural forest and Pinus rigida forest was a about 30-year-old plantation. Density of tree layers of Quercus acuta, Quercus acutissima and Pinus rigida forests was 2,250 trees/ha, 760 trees/ha, and 1,560 trees/ha, respectively. Mean DBH of tree layers of Quercus acuta, Quercus acutissima and Pinus rigida forests was 12.1 cm, 14.3 cm, and 14.1 cm, respectively. Total basal area of tree layer and subtree layer was $37.1m^2/ha$ for Quercus acuta forest, $19.0m^2/ha$ for Quercus acutissima forest, and $29.2m^2/ha$ for Pinus rigida forest, respectively. According to importance percentage, Camellia japonica was the first dominant species in subtree and shrub layers of all of Quercus acuta, Quercus acutissima and Pinus rigida forests. Species diversity(H') of forest total was 0.814 for Quercus acuta forest, 0.956 for Quercus acutissima forest, and 0.866 for Pinus rigida forest, respectively. According to diameter distribution, Quercus acuta forest was supposed to remain unchanged for a long time. Quercus acutissima forest was changing to Camellia japomica forest and Pinus rigida forest was changing to Quercus acuta-Camellia japonica forest.

Approaches for Developing a Korean Model Through Analysis of Overseas Forest Soil Carbon Models (해외 산림토양탄소모델 분석을 통한 한국형 모델 개발방안 연구)

  • Lee, Ah-Reum;Yi, Koong;Son, Yo-Whan;Kim, Rae-Hyun;Kim, Choon-Sig;Park, Gwan-Soo;Lee, Kyeong-Hak;Yi, Myong-Jong
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.6
    • /
    • pp.791-801
    • /
    • 2010
  • Forest soil carbon model is a useful tool for understanding complex soil carbon cycle in forests and estimating dynamics of soil carbon to climate change. However, studies on development and application of the model are insufficient in Korea. The need for development of Korean model is now growing, because there are notable problems and limitations for adapting overseas models in Korea to meet the requirements of the international organizations such as IPCC, which demands highly reliable data for national reports. Therefore, we have studied 7 overseas forest soil carbon models (CBM-CFS3, CENTURY, Forest-DNDC, ROMUL, RothC, Sim-CYCLE, YASSO), analyzed and compared their structure, decomposition mechanism, initializing process and, input and output data. Then we evaluated applicability of these models in Korea with three criteria; availability of input data, performance of model, and possibility of regional modification. Finally, a systematic process for applying a new model was suggested based on these analyses.

Dynamics of Plant Communities under Human Impact in the Green Belt nearby Seoul - The Balance of Litter Production and Decomposition in the Forests (人間干涉하의 首都圈 그린벨트내 植物群集의 動態 - 森林群落에 있어서 落葉의 生産과 分解의 平衡)

  • Chang, Nam-Kee;Byeong-Kiu Kim;Duck-Key Lee
    • The Korean Journal of Ecology
    • /
    • v.14 no.2
    • /
    • pp.171-179
    • /
    • 1991
  • In this study, the balnce of the litter production and decompsition on the forest floors in the green belt nearby seoul, which had been established in 1972, and turnover cycles of minerral nutrients were inverstigated. litter production and decomposition in the forests of quercus accutissima, q, serrata, q. mongolica, salix koreensis and alnus hirsuta were reached at the equilibium stated from 1972 to 1988 but this balance in the pine forest of pinus densiflore and p. rigida was not. Under the forests in the blance of the litter production and decomposition, the maximum amounts of n, p, k, ca and na retured to soil annually were 4.9g/㎡ in the alnus hirsuta forest, 0.35g/㎡ in the salix koreensis forest, 2.70g/㎡ in the quercus accutissima forest, 8.85g/㎡ in the s. koreensis forest and 3.93g/㎡ in the s. koreensis forest, respectively, and the minimum were 2.8g/㎡ in the s. koreensis forest, 0.108g/㎡ in the q. mongolica forest, 0.06g/㎡ in the s. koreensis forest, 2.12g/㎡ q. mongolica forest and 0.15g/㎡ in the q.accutissima forest.

  • PDF

A STUDY on FOREST FIRE SPREADING ALGORITHM with CALCULATED WIND DISTRIBUTION

  • Song, J.H.;Kim, E.S.;Lim, H.J.;Kim, H.;Kim, H.S.;Lee, S.Y
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.305-310
    • /
    • 1997
  • There are many parameters in prediction of forest fire spread. The variables such as fuel moisture, fuel loading, wind velocity, wind direction, relative humidity, slope, and solar aspect have important effects on fire. Particularly, wind and slope factors are considered to be the most important parameters in propagation of forest fire. Generally, slope effect cause different wind distribution in mountain area. However, this effect is disregarded in complex geometry. In this paper, wind is estimated by applying computational fluid dynamics to the forest geometry. Wind velocity data is obtained by using CFD code with Newtonian model and slope is calculated with geometrical data. These data are applied fer 2-dimentional forest fire spreading algorithm with Korean ROS(Rate Of Spread). Finally, the comparison between the simulation and the real forest fire is made. The algorithm spread of forest fire will help fire fighter to get the basic data far fire suppression and the prediction to behavior of forest fire.

  • PDF

A Basic Survey about Stand Structure of Old Korean Fir(Abies holophylla) Stands in Mt. Sorak (내설악 전(젓)나무 고목림 구조 기초 조사)

  • Chung Eui-Gyung;Youn Young-Il
    • Korean Journal of Environmental Biology
    • /
    • v.23 no.2 s.58
    • /
    • pp.141-145
    • /
    • 2005
  • Forest stand structure was surveyed to understand the Korean fir (Abies holophylla) dominant forest ecosystem in Nae-Sorak mountain. Despite limited surveyed area, a diverse forest structure, a characteristic in natural forests, is well presented in the area. According to Leibundgut's (1984) classification of forest structure, stand A, B represents declining stage, stand C regeneration stage, stand D combination of stabilizing and declining stage, and stand E unstable stage of selection.