• 제목/요약/키워드: forecasting performance

검색결과 707건 처리시간 0.028초

수요 특성이 계층적 수요예측법의 퍼포먼스에 미치는 영향 : 해군 수리부속 사례 연구 (The Impact of Demand Features on the Performance of Hierarchical Forecasting : Case Study for Spare parts in the Navy)

  • 문성민
    • 경영과학
    • /
    • 제29권1호
    • /
    • pp.101-114
    • /
    • 2012
  • The demand for naval spare parts is intermittent and erratic. This feature, referred to as non-normal demand, makes forecasting difficult. Hierarchical forecasting using an aggregated time series can be more reliable to predict non-normal demand than direct forecasting. In practice the performance of hierarchical forecasting is not always superior to direct forecasting. The relative performance of the alternative forecasting methods depends on the demand features. This paper analyses the influence of the demand features on the performance of the alternative forecasting methods that use hierarchical and direct forecasting. Among various demand features variability, kurtosis, skewness and equipment groups are shown to significantly influence on the performance of the alternative forecasting methods.

A Comparative Study on the Forecasting Performance of Range Volatility Estimators using KOSPI 200 Tick Data

  • Kim, Eun-Young;Park, Jong-Hae
    • 재무관리연구
    • /
    • 제26권2호
    • /
    • pp.181-201
    • /
    • 2009
  • This study is on the forecasting performance analysis of range volatility estimators(Parkinson, Garman and Klass, and Rogers and Satchell) relative to historical one using two-scale realized volatility estimator as a benchmark. American sub-prime mortgage loan shock to Korean stock markets happened in sample period(January 2, 2006~March 10, 2008), so the structural change somewhere within this period can make a huge influence on the results. Therefore sample was divided into two sub-samples by May 30, 2007 according to Zivot and Andrews unit root test results. As expected, the second sub-sample was much more volatile than the first sub-sample. As a result of forecasting performance analysis, Rogers and Satchell volatility estimator showed the best forecasting performance in the full sample and relatively better forecasting performance than other estimators in sub-samples. Range volatility estimators showed better forecasting performance than historical volatility estimator during the period before the outbreak of structural change(the first sub-sample). On the contrary, the forecasting performance of range volatility estimators couldn't beat that of historical volatility estimator during the period after this event(the second sub-sample). The main culprit of this result seems to be the increment of range volatility caused by that of intraday volatility after structural change.

  • PDF

Soft Set Theory Oriented Forecast Combination Method for Business Failure Prediction

  • Xu, Wei;Xiao, Zhi
    • Journal of Information Processing Systems
    • /
    • 제12권1호
    • /
    • pp.109-128
    • /
    • 2016
  • This paper presents a new combined forecasting method that is guided by the soft set theory (CFBSS) to predict business failures with different sample sizes. The proposed method combines both qualitative analysis and quantitative analysis to improve forecasting performance. We considered an expert system (ES), logistic regression (LR), and support vector machine (SVM) as forecasting components whose weights are determined by the receiver operating characteristic (ROC) curve. The proposed procedure was applied to real data sets from Chinese listed firms. For performance comparison, single ES, LR, and SVM methods, the combined forecasting method based on equal weights (CFBEWs), the combined forecasting method based on neural networks (CFBNNs), and the combined forecasting method based on rough sets and the D-S theory (CFBRSDS) were also included in the empirical experiment. CFBSS obtains the highest forecasting accuracy and the second-best forecasting stability. The empirical results demonstrate the superior forecasting performance of our method in terms of accuracy and stability.

Comparison of forecasting performance of time series models for the wholesale price of dried red peppers: focused on ARX and EGARCH

  • Lee, Hyungyoug;Hong, Seungjee;Yeo, Minsu
    • 농업과학연구
    • /
    • 제45권4호
    • /
    • pp.859-870
    • /
    • 2018
  • Dried red peppers are a staple agricultural product used in Korean cuisine and as such, are an important aspect of agricultural producers' income. Correctly forecasting both their supply and demand situations and price is very important in terms of the producers' income and consumer price stability. The primary objective of this study was to compare the performance of time series forecasting models for dried red peppers in Korea. In this study, three models (an autoregressive model with exogenous variables [ARX], AR-exponential generalized autoregressive conditional heteroscedasticity [EGARCH], and ARX-EGARCH) are presented for forecasting the wholesale price of dried red peppers. As a result of the analysis, it was shown that the ARX model and ARX-EGARCH model, each of which adopt both the rolling window and the adding approach and use the agricultural cooperatives price as the exogenous variable, showed a better forecasting performance compared to the autoregressive model (AR)-EGARCH model. Based on the estimation methods and results, there was no significant difference in the accuracy of the estimation between the rolling window and adding approach. In the case of dried red peppers, there is limitation in building the price forecasting models with a market-structured approach. In this regard, estimating a forecasting model using only price data and identifying the forecast performance can be expected to complement the current pricing forecast model which relies on market shipments.

Predicting the Performance of Forecasting Strategies for Naval Spare Parts Demand: A Machine Learning Approach

  • Moon, Seongmin
    • Management Science and Financial Engineering
    • /
    • 제19권1호
    • /
    • pp.1-10
    • /
    • 2013
  • Hierarchical forecasting strategy does not always outperform direct forecasting strategy. The performance generally depends on demand features. This research guides the use of the alternative forecasting strategies according to demand features. This paper developed and evaluated various classification models such as logistic regression (LR), artificial neural networks (ANN), decision trees (DT), boosted trees (BT), and random forests (RF) for predicting the relative performance of the alternative forecasting strategies for the South Korean navy's spare parts demand which has non-normal characteristics. ANN minimized classification errors and inventory costs, whereas LR minimized the Brier scores and the sum of forecasting errors.

RTE 특성이 SCM성과에 미치는 영향 (A Study on the Impact of the RTE Characteristics for SCM Performance)

  • 장활식;전종현;박광오
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제20권3호
    • /
    • pp.161-186
    • /
    • 2011
  • To date, SCM research has mainly focused on the effects of controlled variables on SCM success and emphasized adoption strategies and critical success factors. Consequently, the effects of more uncontrolled variables such as partnership between SCM partners have been largely ignored. The purpose of this study, therefore, is to examine the effects of both controlled variables and uncontrolled variables on SCM performance through affecting RTE characteristics. The six factors examined in this study include Quality of information, partnership quality, Forecasting, Agility, Visibility, and SCM performance. In this study, SCM Performance was divided into three categories: Quality Performance, Cost Performance, Delivery Performance. All factors were examined from the perspective of part suppliers. The results of this study can be summarized as follows. First, SCM information quality positively affected SCM partnership quality, Forecasting, Agility, Visibility. Second, SCM partnership quality positively affected Forecasting, Agility. But, SCM partnership quality showed no significant effect on Visibility. Third, Forecasting had a significant impact on SCM performance. According to the detailed result of measuring SCM performance with Quality Performance, Cost Performance, Delivery Performance, although Forecasting affects Cost Performance, Delivery Performance directly, it does not affect Quality Performance directly. Fourth, Agility also had a significant impact on SCM performance. According to the detailed result of measuring SCM performance, Agility has significant impact on Quality Performance, Cost Performance, Delivery Performance. Fifth, Visibility, as expected, had a significant impact on SCM performance. According to the detailed result of measuring SCM performance, Visibility has significant impact on Quality Performance, Cost Performance, Delivery Performance.

간헐적 수요예측을 위한 이항가중 지수평활 방법 (A Binomial Weighted Exponential Smoothing for Intermittent Demand Forecasting)

  • 하정훈
    • 산업경영시스템학회지
    • /
    • 제41권1호
    • /
    • pp.50-58
    • /
    • 2018
  • Intermittent demand is a demand with a pattern in which zero demands occur frequently and non-zero demands occur sporadically. This type of demand mainly appears in spare parts with very low demand. Croston's method, which is an initiative intermittent demand forecasting method, estimates the average demand by separately estimating the size of non-zero demands and the interval between non-zero demands. Such smoothing type of forecasting methods can be suitable for mid-term or long-term demand forecasting because those provides the same demand forecasts during the forecasting horizon. However, the smoothing type of forecasting methods aims at short-term forecasting, so the estimated average forecast is a factor to decrease accuracy. In this paper, we propose a forecasting method to improve short-term accuracy by improving Croston's method for intermittent demand forecasting. The proposed forecasting method estimates both the non-zero demand size and the zero demands' interval separately, as in Croston's method, but the forecast at a future period adjusted by binomial weight according to occurrence probability. This serves to improve the accuracy of short-term forecasts. In this paper, we first prove the unbiasedness of the proposed method as an important attribute in forecasting. The performance of the proposed method is compared with those of five existing forecasting methods via eight evaluation criteria. The simulation results show that the proposed forecasting method is superior to other methods in terms of all evaluation criteria in short-term forecasting regardless of average size and dispersion parameter of demands. However, the larger the average demand size and dispersion are, that is, the closer to continuous demand, the less the performance gap with other forecasting methods.

Forecasting Project Cost and Time using Fuzzy Set Theory and Contractors' Judgment

  • Alshibani, Adel
    • 국제학술발표논문집
    • /
    • The 6th International Conference on Construction Engineering and Project Management
    • /
    • pp.174-178
    • /
    • 2015
  • This paper presents a new method for forecasting construction project cost and time at completion or at any intermediate time horizon of the project duration. The method is designed to overcome identified limitations of current applications of earned value method in forecasting project cost and time. The proposed method usesfuzzy set theory to model uncertainties associated with project performance and it integrates the earned value technique and the contractors' judgement. The fuzzy set theory is applied as an alternative approach to deterministic and probabilistic methods. Using fuzzy set theory allows contractors to: (1) perform risk analysis for different scenarios of project performance indices, and (2) perform different scenarios expressing vagueness and imprecision of forecasted project cost and time using a set of measures and indices. Unlike the current applications of Earned Value Method(EVM), The proposed method has a numberof interesting features: (1) integrating contractors' judgement in forecasting project performance; (2) enabling contractors to evaluate the risk associated with cost overrun in much simpler method comparing with that of simulation, and (3) accounting for uncertainties involved in the forecasting project cost.

  • PDF

Hybrid CSA optimization with seasonal RVR in traffic flow forecasting

  • Shen, Zhangguo;Wang, Wanliang;Shen, Qing;Li, Zechao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권10호
    • /
    • pp.4887-4907
    • /
    • 2017
  • Accurate traffic flow forecasting is critical to the development and implementation of city intelligent transportation systems. Therefore, it is one of the most important components in the research of urban traffic scheduling. However, traffic flow forecasting involves a rather complex nonlinear data pattern, particularly during workday peak periods, and a lot of research has shown that traffic flow data reveals a seasonal trend. This paper proposes a new traffic flow forecasting model that combines seasonal relevance vector regression with the hybrid chaotic simulated annealing method (SRVRCSA). Additionally, a numerical example of traffic flow data from The Transportation Data Research Laboratory is used to elucidate the forecasting performance of the proposed SRVRCSA model. The forecasting results indicate that the proposed model yields more accurate forecasting results than the seasonal auto regressive integrated moving average (SARIMA), the double seasonal Holt-Winters exponential smoothing (DSHWES), and the relevance vector regression with hybrid Chaotic Simulated Annealing method (RVRCSA) models. The forecasting performance of RVRCSA with different kernel functions is also studied.

수요 예측 평가를 위한 가중절대누적오차지표의 개발 (A New Metric for Evaluation of Forecasting Methods : Weighted Absolute and Cumulative Forecast Error)

  • 최대일;옥창수
    • 산업경영시스템학회지
    • /
    • 제38권3호
    • /
    • pp.159-168
    • /
    • 2015
  • Aggregate Production Planning determines levels of production, human resources, inventory to maximize company's profits and fulfill customer's demands based on demand forecasts. Since performance of aggregate production planning heavily depends on accuracy of given forecasting demands, choosing an accurate forecasting method should be antecedent for achieving a good aggregate production planning. Generally, typical forecasting error metrics such as MSE (Mean Squared Error), MAD (Mean Absolute Deviation), MAPE (Mean Absolute Percentage Error), and CFE (Cumulated Forecast Error) are utilized to choose a proper forecasting method for an aggregate production planning. However, these metrics are designed only to measure a difference between real and forecast demands and they are not able to consider any results such as increasing cost or decreasing profit caused by forecasting error. Consequently, the traditional metrics fail to give enough explanation to select a good forecasting method in aggregate production planning. To overcome this limitation of typical metrics for forecasting method this study suggests a new metric, WACFE (Weighted Absolute and Cumulative Forecast Error), to evaluate forecasting methods. Basically, the WACFE is designed to consider not only forecasting errors but also costs which the errors might cause in for Aggregate Production Planning. The WACFE is a product sum of cumulative forecasting error and weight factors for backorder and inventory costs. We demonstrate the effectiveness of the proposed metric by conducting intensive experiments with demand data sets from M3-competition. Finally, we showed that the WACFE provides a higher correlation with the total cost than other metrics and, consequently, is a better performance in selection of forecasting methods for aggregate production planning.