• Title/Summary/Keyword: forebrain

Search Result 92, Processing Time 0.017 seconds

The Differentiation of the Cholinergic Nerve Cells at the Meynert Basal Nucleus of the Basal Forebrains in the Growth Period of Rat (흰쥐 전뇌 기저부 Meynert기저핵에서 출생 후 발육기간에 따른 콜린성 신경세포의 분화)

  • Hahm, Young-Ok;Kim, Soo-Jin
    • Applied Microscopy
    • /
    • v.31 no.4
    • /
    • pp.355-365
    • /
    • 2001
  • This study was performed to investigate the distribution and differentiation on the immunoreacted cells of the ChAT (choline acetyltransferase) at the Meynert basal nucleus of the forebrains in the growth periods of rat, using the immunohistochemistric method. According to the cell shape and the ratio of long axis vs short axis of cell soma, the ChAT antibody reacted nerve cells in the Meynert basal nucleus of the rats were classified into six types. In the adult rats, the FD (frequency distributions) of round, oval and elongated cells were maximum. The FD of these types were shown to be progressively decreased during the postnatal development. In addition, the FD of elongated nerve cells in were observed in the adult rats respectively. This was thought to be the same phenomenon as those in the round and oval cells . The total mean volume of ChAT antibody reacted cell somata was lowest in the PND (postnatal days) 7 rats and was highest in the PND 21 rats. But, those were decreased to the adult. These results suggest that ChAT antibody reacted nerve cells grow up to PND 21 and then, differentiate into the various types by neurites outgrowing. On the electron micrography, the adult rat forebrain cells were obtained to be well developed ribosomes, polysomes , rough endoplasmic reticula and mitochondria. The immunreactivities were observed in ribosomes, polysomes, rough endoplasmic reticula and outer membrane of mitochondria. Golgi complexes were poorly developed and not showed jmmunreactivity. The ribosomes , polysomes and endoplasmic reticula are considered to be closely related to the inter cellular localization and biosynthesis of the ChAT but not Golgi complex. According to the results in the present study, it is considered that the ChAT-immunoreacted nerve cells in the Meynert basal nucleus of the rat forebrains are differentiated throughout the postnatal development with following processes of changes; 1) the cholinergic nerve cells develop postnatally 2) cell soma volumes gradually increase during the early postnatal days 3) and then, cells differentiate into the various types by projecting the neurites to the appropriate area after PND 21.

  • PDF

Mammalian Cloning by Nuclear transfer, Stem Cell, and Enzyme Telomerase (핵치환에 의한 cloning, stem cell, 그리고 효소 telomerase)

  • 한창열
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.6
    • /
    • pp.423-428
    • /
    • 2000
  • In 1997 when cloned sheep Dolly and soon after Polly were born, it had become head-line news because in the former the nucleus that gave rise to the lamb came from cells of six-year-old adult sheep and in the latter case a foreign gene was inserted into the donor nucleus to make the cloned sheep produce human protein, factor IX, in e milk. In the last few years, once the realm of science fiction, cloned mammals especially in livestock have become almost commonplace. What the press accounts often fail to convey, however, is that behind every success lie hundreds of failures. Many of the nuclear-transferred egg cells fail to undergo normal cell divisions. Even when an embryo does successfully implant in the womb, pregnancy often ends in miscarriage. A significant fraction of the animals that are born die shortly after birth and some of those that survived have serious developmental abnormalities. Efficiency remains at less than one % out of some hundred attempts to clone an animal. These facts show that something is fundamentally wrong and enormous hurdles must be overcome before cloning becomes practical. Cloning researchers now tent to put aside their effort to create live animals in order to probe the fundamental questions on cell biology including stem cells, the questions of whether the hereditary material in the nucleus of each cell remains intact throughout development, and how transferred nucleus is reprogrammed exactly like the zygotic nucleus. Stem cells are defined as those cells which can divide to produce a daughter cell like themselves (self-renewal) as well as a daughter cell that will give rise to specific differentiated cells (cell-differentiation). Multicellular organisms are formed from a single totipotent stem cell commonly called fertilized egg or zygote. As this cell and its progeny undergo cell divisions the potency of the stem cells in each tissue and organ become gradually restricted in the order of totipotent, pluripotent, and multipotent. The differentiation potential of multipotent stem cells in each tissue has been thought to be limited to cell lineages present in the organ from which they were derived. Recent studies, however, revealed that multipotent stem cells derived from adult tissues have much wider differentiation potential than was previously thought. These cells can differentiate into developmentally unrelated cell types, such as nerve stem cell into blood cells or muscle stem cell into brain cells. Neural stem cells isolated from the adult forebrain were recently shown to be capable of repopulating the hematopoietic system and produce blood cells in irradiated condition. In plants although the term$\boxDr$ stem cell$\boxUl$is not used, some cells in the second layer of tunica at the apical meristem of shoot, some nucellar cells surrounding the embryo sac, and initial cells of adventive buds are considered to be equivalent to the totipotent stem cells of mammals. The telomere ends of linear eukaryotic chromosomes cannot be replicated because the RNA primer at the end of a completed lagging strand cannot be replaced with DNA, causing 5' end gap. A chromosome would be shortened by the length of RNA primer with every cycle of DNA replication and cell division. Essential genes located near the ends of chromosomes would inevitably be deleted by end-shortening, thereby killing the descendants of the original cells. Telomeric DNA has an unusual sequence consisting of up to 1,000 or more tandem repeat of a simple sequence. For example, chromosome of mammal including human has the repeating telomeric sequence of TTAGGG and that of higher plant is TTTAGGG. This non-genic tandem repeat prevents the death of cell despite the continued shortening of chromosome length. In contrast with the somatic cells germ line cells have the mechanism to fill-up the 5' end gap of telomere, thus maintaining the original length of chromosome. Cem line cells exhibit active enzyme telomerase which functions to maintain the stable length of telomere. Some of the cloned animals are reported prematurely getting old. It has to be ascertained whether the multipotent stem cells in the tissues of adult mammals have the original telomeres or shortened telomeres.

  • PDF