• Title/Summary/Keyword: force vibration

Search Result 2,595, Processing Time 0.036 seconds

Vibration Analysis of a Rolling Piston Type Rotary Compressor (구름 피스톤 이용 회전식 압축기 진동 해석 연구)

  • 한형석;황선웅;이은섭
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.6
    • /
    • pp.205-213
    • /
    • 2003
  • This paper is concerned with a roiling piston type rotary compressor for air conditioning use. Vibration of the compressor is analyzed numerically and experimentally. Multibody dynamic analysis methods to predict the vibration is given. The compressor is modeled as a system composed of bodies, joints, and force elements. Experimental results are also shown to be compared with simulation results. A sensitivity study using different variables that affect the compressor vibration is also carried out. It is found that the mass of weight balancer plays an important role in acceleration.

A Vibration Mode Analysis of Cable-type Winding for Distribution Power Transformer by using Transfer Matrix Method (변환행렬법을 이용한 케이블 권선형 배전용 변압기 귄선의 진동모드 해석)

  • Shin, Pan-Seok;Chung, Hyun-Koo;Yoon, Koo-Young
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.1
    • /
    • pp.85-91
    • /
    • 2009
  • This paper proposes a simulation method of the internal winding fault to calculate the short-circuit current, electromagnetic force and vibration mode in a distribution power transformer by using FEM program(FLUX2D) and analytic algorithm. A usage of the Transfer matrix method is also presented for the vibration mode analysis of the cable-type winding of power transformer. The equations of the winding are approximated by the series expansions of the distributed mass mode and Timoshenko's beam theory. The simulation examples are provided for the cable type winding of the transformer(22.9[kV]/220[V], 1,000[kVA]) to verify the method. The proposed Transfer Matrix Method is also verified by the ANSYS program for the vibration mode of the transformer winding. The method presented may serve as one of the useful tools in the electromagnetic force and vibration analysis of the transformer winding under the short circuit condition.

Free vibration of axially loaded Reddy-Bickford beam on elastic soil using the differential transform method

  • Yesilce, Yusuf;Catal, Seval
    • Structural Engineering and Mechanics
    • /
    • v.31 no.4
    • /
    • pp.453-475
    • /
    • 2009
  • The literature regarding the free vibration analysis of Bernoulli-Euler and Timoshenko beams on elastic soil is plenty, but the free vibration analysis of Reddy-Bickford beams on elastic soil with/without axial force effect using the Differential Transform Method (DTM) has not been investigated by any of the studies in open literature so far. In this study, the free vibration analysis of axially loaded Reddy-Bickford beam on elastic soil is carried out by using DTM. The model has six degrees of freedom at the two ends, one transverse displacement and two rotations, and the end forces are a shear force and two end moments in this study. The governing differential equations of motion of the rectangular beam in free vibration are derived using Hamilton's principle and considering rotatory inertia. Parameters for the relative stiffness, stiffness ratio and nondimensionalized multiplication factor for the axial compressive force are incorporated into the equations of motion in order to investigate their effects on the natural frequencies. At first, the terms are found directly from the analytical solutions of the differential equations that describe the deformations of the cross-section according to the high-order theory. After the analytical solution, an efficient and easy mathematical technique called DTM is used to solve the governing differential equations of the motion. The calculated natural frequencies of one end fixed and the other end simply supported Reddy-Bickford beam on elastic soil using DTM are tabulated in several tables and figures and are compared with the results of the analytical solution where a very good agreement is observed and the mode shapes are presented in graphs.

Aerodynamic and aero-elastic performances of super-large cooling towers

  • Zhao, Lin;Chen, Xu;Ke, Shitang;Ge, Yaojun
    • Wind and Structures
    • /
    • v.19 no.4
    • /
    • pp.443-465
    • /
    • 2014
  • Hyperbolic thin-shell cooling towers have complicated vibration modes, and are very sensitive to the effects of group towers and wind-induced vibrations. Traditional aero-elastic models of cooling towers are usually designed based on the method of stiffness simulation by continuous medium thin shell materials. However, the method has some shortages in actual engineering applications, so the so-called "equivalent beam-net design method" of aero-elastic models of cooling towers is proposed in the paper and an aero-elastic model with a proportion of 1: 200 based on the method above with integrated pressure measurements and vibration measurements has been designed and carried out in TJ-3 wind tunnel of Tongji university. According to the wind tunnel test, this paper discusses the impacts of self-excited force effect on the surface wind pressure of a large-scale cooling tower and the results show that the impact of self-excited force on the distribution characteristics of average surface wind pressure is very small, but the impact on the form of distribution and numerical value of fluctuating wind pressure is relatively large. Combing with the Complete Quadratic Combination method (hereafter referred to as CQC method), the paper further studies the numerical sizes and distribution characteristics of background components, resonant components, cross-term components and total fluctuating wind-induced vibration responses of some typical nodes which indicate that the resonance response is dominant in the fluctuating wind-induced vibration response and cross-term components are not negligible for wind-induced vibration responses of super-large cooling towers.

The Influence of Moving Masses on Dynamic Behavior of a Cantilever Pipe Subuected to Uniformly Distributed Follower Forces (이동질량과 등분포접선종동력이 외팔보의 동특성에 미치는 영향)

  • Son, In-Soo;Yoon, Han-Ik;Kim, Hyun-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.80-85
    • /
    • 2002
  • A conveying fluid cantilever pipe system subjected to an uniformly distributed tangential follower force and three moving masses upon it constitute this vibrational system. The influences of the velocities of moving masses, the distance between two moving masses. and the uniformly distributed tangential follower force have been studied on the dynamic behavior of a cantilever pipe system by numerical mettled. The uniformly distributed tangential follower force is considered within its ciritical value of a cantilever pipe without moving masses, and three constant velocities and three constant distance between two moving masses are also chosen. When the moving masses exist on pipe, As the velocity of the moving mass and distributed tangental force increases, the deflection of cantilever pipe conveying fluid is decreased, respectively. Increasing of the velocity of fluid flow make the amplitude of cantilever pipe conveying fluid decrease. After the moving mass passed upon the pipe, the tip displacement of pipe is influenced by the potential energy of cantilever pipe.

  • PDF

Optimal Dimple Point of SFF HDD Suspension for Improving the Unloading Performance (언로드 성능 향상을 위한 딤플 포인트의 최적설계)

  • Kim, Ki-Hoon;Lee, Young-Hyun;Lee, Hyung-Jun;Park, No-Cheol;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.609-612
    • /
    • 2007
  • The HDD (hard disk drive) using Load/Unload (L/UL) technology includes the benefits which are increased areal density, reduced power consumption and improved shock resistance than those of contact-start-stop (CSS). Dynamic L/UL has been widely used in portable hard disk drive and will become the key technology for developing the small form factor hard disk drive. The main design objectives of the L/UL mechanisms are no slider-disk contact or no media damage even with contact during L/UL, and a smooth and short unloading process. In this paper, we focus on lift-off force, pitch static attitude (PSA), roll static attitude (RSA) and dimple point. The "lift-off" force, defined as the minimum air bearing force, is another very important indicator of unloading performance. A large amplitude of lift-off force increases the ramp force, the unloading time, the slider oscillation and contact-possibility. PSA and RSA are also very important parameters in L/UL system and stability of slider is mainly determined by PSA and RSA. Dimple point by PSA and RSA is also important indicator. Therefore we find the optimal dimple point of SFF HDD suspension for improving the unloading performance.

  • PDF

Reduction of the actuator oscillations in the flying vehicle under a follower force

  • Kavianipour, O.;Khoshnood, A.M.;Sadati, S.H.
    • Structural Engineering and Mechanics
    • /
    • v.47 no.2
    • /
    • pp.149-166
    • /
    • 2013
  • Flexible behaviors in new aerospace structures can lead to a degradation of their control and guidance system and undesired performance. The objectives of the current work are to analyze the vibration resulting from the propulsion force on a Single Stage to Orbit (SSTO) launch vehicle (LV). This is modeled as a follower force on a free-free Euler-Bernoulli beam consisting of two concentrated masses at the two free ends. Once the effects on the oscillation of the actuators are studied, a solution to reduce these oscillations will also be developed. To pursue this goal, the stability of the beam model is studied using Ritz method. It is determined that the transverse and rotary inertia of the concentrated masses cause a change in the critical follower force. A new dynamic model and an adaptive control system for an SSTO LV have been developed that allow the aerospace structure to run on its maximum bearable propulsion force with the optimum effects on the oscillation of its actuators. Simulation results show that such a control model provides an effective way to reduce the undesirable oscillations of the actuators.

Analysis of Isolation System for Impulsive Force Device with Recoil Mechanism (반동방식 충격기구의 완충시스템 해석)

  • Kim, HyoJun;Ryu, BongJo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.3 s.96
    • /
    • pp.272-279
    • /
    • 2005
  • In this study the optimal isolation system for the prototype HIFD(high impulsive force device) is investigated. For this purpose, firstly, the dynamic behavior of a human body and a transmitted force under specific operation conditions are analyzed through a series of experimental works using the devised test setup. In order to design the optimal dynamic absorbing system, the parameter optimization process is performed using the simplified isolation system model based on the experimental results of linear impulse and transmitted force. Finally, under the parameters satisfying the constraints of the buffering displacement and the transmitted force, the performance of the designed isolation system for the prototype HIFD is evaluated by experiment.

4-pole Lorentz Force Type Self-bearing Motor with a New Winding Configuration (새로운 권선법을 이용한 4극 로렌쯔형 자기 부상 모터)

  • ;Yohji Okada
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.1
    • /
    • pp.73-81
    • /
    • 2002
  • This paper introduces a four-Pole Lorentz force type self-bearing motor in which a new winding configuration is proposed to enable the sing1e winding to function both as a synchronous PM motor and as a magnetic bearing. The Lorentz force type has some good points such as the linearity of control force, freedom from flux saturation, and high efficiency, unlike conventional self-bearing motors using a reluctance force. And also, compared with the previously proposed eight-pole type, this four-pole self-bearing motor is more profitable for high rotational speed. In this paper, mathematical expressions of torque and radial force in the proposed self-bearing motor are derived to show that they can be separately controlled regardless of rotational speed and time. For verification of the theory, a prototype is made, where a ring-shape outer rotor is actively controlled in two radial directions while the other motions are passively stable supposing the radial stability. Through some experiments. it is shown that the proposed scheme can provide high capability and feasibility for a small high-speed self-bearing motor.

Analysis of the Magnetic Force and Torque of a Rotatory Two-phase Transverse Flux Machine (회전형 이상 횡자속형 전동기에서 발생하는 자기력 및 토크 해석)

  • Park, Nam-Ki;Chang, Jung-Hwan;Jang, Gun-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.1 s.118
    • /
    • pp.33-40
    • /
    • 2007
  • Rotatory two-phase transverse flux machine(TFM) is a relatively new type of motor with high power density, high torque, and low speed in comparison to conventional electrical motors. However, it has some shortcomings,.i.e. complex construction and high possibility of the magnetically induced nitration due to its inherent structure. This Paper investigates the characteristics of the magnetic force and the torque in the rotatory two-phase TFM by using the 3-D finite element method and the spectral analysis. This research shows that the average torque decreases and that the torque ripple increases as the phase delay increases. It also shows that the unbalanced magnetic force is one of the dominant excitation forces in this machine. And it proposes a new topology of rotatory two-phase TFM to eliminate the unbalanced magnetic force.