• Title/Summary/Keyword: force tracking control

Search Result 172, Processing Time 0.03 seconds

Force Tracking Control of a Small-Sized SMA Gripper H$_\infty$ Synthesis (H$_\infty$ 제어기법을 적용한 소형 SMA 그립퍼의 힘 추적 제어)

  • 한영민;최승복;정재천
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.391-395
    • /
    • 1996
  • This paper presents a robust force tracking control of a small-sized SMA gripper with two fingers using shape memory alloy(SMA) actuators. The mathematical governing equation of the proposed system is derived by Hamilton's principle and Lagrangian equation and then, the control system model is integrated with the first-order actuator dynamics. Uncertain system parameters such as time constant of the actuators are also included in the control model. A robust two degree of freedom(TDF) controller using H$_{\infty}$ control theory, which has inherent robustness to model uncertainties and external disturbances, is adopted to achieve end-point force tracking control of the two-finger gripper. Force tracking control performances for desired trajectories represented by sinusoidal and step functions are evaluated by undertaking both simulation and experimental works.

  • PDF

Implementation and Control of Crack Tracking Robot Using Force Control : Part Ⅱ. Force Control (힘제어 기반의 틈새 추종 로봇의 제작 및 제어에 관한 연구 : Part Ⅱ. 힘제어)

  • Jeon Poong Woo;Jung Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.4
    • /
    • pp.337-343
    • /
    • 2005
  • In this paper, experimental studies of force control of the crack tracking robot are presented. The crack tracking robot should maintain constant contact with the road to perform cleaning process of the crack effectively. Regulating desired force on the road requires a sophisticated force control algorithm. Here, two main force control algorithms such as the impedance force control and the explicit force control are used. Performances of two force control algorithms are compared.

Adaptive Force Ripple Compensation and Precision Tracking Control of High Precision Linear Motor System (초정밀 선형 모터 시스템의 적응형 힘리플 보상과 정밀 트랙킹 제어)

  • Choi Young-Man;Gweon Dae-Gab;Lee Moon G.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.12 s.177
    • /
    • pp.51-60
    • /
    • 2005
  • This paper describes a robust control scheme for high-speed and long stroke scanning motion of high precision linear motor system consisting of linear motor, air bearing guide and position measurement system using heterodyne interferometer. Nowadays, semiconductor process and inspection of wafer or LCD need high speed and long travel length for their high throughput and extremely small velocity fluctuations or tracking errors. In order to satisfy these conditions, linear motor system are widely used because they have large thrust force and do not need motion conversion mechanisms such as ball screw, rack & pinion or capstan with which the system are burdened. However linear motors have a problem called force ripple. Force ripple deteriorates the tracking performances and makes periodic position errors. So, force ripple must be compensated. To maximize the tracking performance of linear motor system, we propose the control scheme which is composed of a robust control method, Time Delay Controller (TDC) and a feedforward control method, Zero Phase Error Tracking Control (ZPETC) for accurate tracking a given trajectory and an adaptive force ripple compensation (AFC) algorithm fur estimating and compensating force ripple. The adaptive ripple compensation is continuously refined on the basis of tracking error. Computer simulation results based on modeled parameters verify the effectiveness of the proposed control scheme for high-speed, long stroke and high precision scanning motion and show that the proposed control scheme can achieve a sup error tracking performance in comparison to conventional TDC control.

Force Tracking Control of a Smart Flexible Gripper Featuring Piezoceramic Actuators (압전 세라믹 작동기로 구성된 스마트 유연 그리퍼의 힘 추적 제어)

  • Choi, Seung-Bok;Cheong, Chae-Cheon;Lee, Chul-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.1
    • /
    • pp.174-184
    • /
    • 1997
  • This paper presents a robust force tracking control of a smart flexible gripper featured by a piezoceramic actuator characterizing its durability and quick response time. A mathematical governing equation for the proposed gripper structure is derived by employing Hamilton's principle and a state space control model is subsequently obtained through model analysis. Uncertain system parameters such as frequency variation are included in the control model. A sliding mode control theory which has inherent robustness to the sys- tem uncertainties is adopted to design a force tracking controller for the piezoceramic actuator. Using out- put information from the tip force sensor, a full-order observer is constructed to estimate state variables of the system. Force tracking performances for desired trajectories represented by sinusoidal and step func- tions are evaluated by undertaking both simulation and experimental works. In addition, in order to illustrate practical feasibility of the proposed method, a two-fingered gripper is constructed and its performance is demonstrated by showing a capability of holding an object.

  • PDF

Development and Control of a Roadway Seam Tracking Mobile Robot

  • Cho, Hyun-Taek;Jeon, Poong-Woo;Jung, Seul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2502-2507
    • /
    • 2003
  • In this paper, a crack sealing robot is developed. The crack sealing robot is built to detect, track, and seal the crack on the pavement. The sealing robot is required to brush all dirt in the crack out for preparing a better sealing job. Camera calibration has been done to get accurate crack position. In order to perform a cleaning job, the explicit force control method is used to regulate a specified desired force in order to maintain constant contact with the ground. Experimental studies of force tracking control are conducted under unknown environment stiffness and location. Crack tracking control is performed. Force tracking results are excellent and the robot finds and tracks the crack very well.

  • PDF

Implementation of Force Tracking Control of a Slave Mobile Robot for Teleoperation Control System (원격제어 시스템의 종로봇인 이동 로봇의 제작과 힘 추종 제어 구현)

  • Bae, Yeong-Geol;Choi, Ho-Jin;Jung, Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.7
    • /
    • pp.681-687
    • /
    • 2010
  • In this paper, an implementation of force control for a slave mobile robot in tele-operation environment is presented. A mobile robot is built to have a force control capability with a force sensor and tested for force tracking control performances. Both position and contact force are regulated by a PID based hybrid control method and the impedance force control method. To minimize accumulated errors due to the adaptive impedance force control method, the novel force control method with a weighted function is proposed. Experimental studies of regulating contact forces for different control algorithms are tested and their performances are compared.

Force Reflecting Control for 3-DOF Heavy-Duty Power Telemanipulators (3 자유도 고하중 원격조작기의 힘반영 제어)

  • 고윤세;정광영;윤지섭
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.425-425
    • /
    • 2000
  • The heavy duty power manipulate generally has high ratio gear reducers at its joints. When it is used as a slave manipulator in the teleoperation system, therefore, the control input saturates frequently and its tracking performance and stability ate also likely to be deteriorated. This paper proposes a force reflecting control scheme for the manipulator with control input saturation. A series of experiments are shown to give excellent tracking performance with force reflection regardless of control input saturation.

  • PDF

Implementation and Verification of Deep Learning-based Automatic Object Tracking and Handy Motion Control Drone System (심층학습 기반의 자동 객체 추적 및 핸디 모션 제어 드론 시스템 구현 및 검증)

  • Kim, Youngsoo;Lee, Junbeom;Lee, Chanyoung;Jeon, Hyeri;Kim, Seungpil
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.16 no.5
    • /
    • pp.163-169
    • /
    • 2021
  • In this paper, we implemented a deep learning-based automatic object tracking and handy motion control drone system and analyzed the performance of the proposed system. The drone system automatically detects and tracks targets by analyzing images obtained from the drone's camera using deep learning algorithms, consisting of the YOLO, the MobileNet, and the deepSORT. Such deep learning-based detection and tracking algorithms have both higher target detection accuracy and processing speed than the conventional color-based algorithm, the CAMShift. In addition, in order to facilitate the drone control by hand from the ground control station, we classified handy motions and generated flight control commands through motion recognition using the YOLO algorithm. It was confirmed that such a deep learning-based target tracking and drone handy motion control system stably track the target and can easily control the drone.

Simultaneous Trajectory Tracking Control of Position and Force with Pneumatic Cylinder Driving Apparatus

  • Jang Ji Seong
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.1107-1115
    • /
    • 2005
  • In this study, a position and force simultaneous trajectory tracking control algorithm is proposed for a driving apparatus that consists of two pneumatic cylinders connected in series. The controller applied to the driving apparatus is composed of a non-interaction controller to compensate for interaction between cylinders and a disturbance observer aimed to reduce the effect of model discrepancy that cannot be compensated by the non-interaction controller. The effectiveness of the proposed control algorithm is proved by experimental results.

Force tracking position-based impedance control of robot manipulator with unknown environment stiffness

  • Jung, Seul;Hsia, T.C.;Ahn, D.S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.8-11
    • /
    • 1996
  • In impedance control for contact force tracking it is well known that the reference trajectory of the robot is calculated from known environment stiffness. The accuracy of estimating the environment stiffness determines the performance of the resulting force tracking. Here we present a simple technique, called the trajectory modification technique(TMT), of determining the reference trajectory under the condition that the environment stiffness is unknown. Computer simulation studies have shown that force tracking using the proposed technique is excellent for unknown environment with time varying stiffness.

  • PDF