• Title/Summary/Keyword: force sensing

Search Result 349, Processing Time 0.019 seconds

Characteristic Evaluation of Pressure Mapping System for Patient Position Monitoring in Radiation Therapy

  • Kang, Seonghee;Choi, Chang Heon;Park, Jong Min;Chung, Jin-Beom;Eom, Keun-Yong;Kim, Jung-in
    • Progress in Medical Physics
    • /
    • v.32 no.4
    • /
    • pp.153-158
    • /
    • 2021
  • Purpose: This study evaluated the features of a pressure mapping system for patient motion monitoring in radiation therapy. Methods: The pressure mapping system includes an MS 9802 force sensing resistor (FSR) sensor with 2,304 force sensing nodes using 48 columns and 48 rows, controller, and control PC (personal computer). Radiation beam attenuation caused by pressure mapping sensor and signal perturbation by 6 and 10 mega voltage (MV) photon beam was evaluated. The maximum relative pressure value (mRPV), average relative pressure value (aRPV), the center of pressure (COP), and area of pressure distribution were obtained with/without radiation using the upper body of an anthropomorphic phantom for 30 minutes with 15 MV. Results: It was confirmed that the differences in attenuation induced by the FSR sensor for 6 and 10 MV photon beams were small. The differences in mRPV, aRPV, area of pressure distribution with/without radiation are about 0.6%, 1.2%, and 0.5%, respectively. The COP values with/without radiation were also similar. Conclusions: The characteristics of a pressure mapping system during radiation treatment were evaluated on the basis of attenuation and signal perturbation using radiation. The pressure distribution measured using the FSR sensor with little attenuation and signal perturbation by the MV photon beam would be helpful for patient motion monitoring.

Development of Direct Printed Flexible Tactile Sensors

  • Lee, Ju-Kyoung;Lee, Kyung-Chang;Kim, Hyun-Hee
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.3
    • /
    • pp.233-243
    • /
    • 2017
  • This paper proposes a structure of direct-printed flexible tactile-sensor. These flexible tactile sensors are based on pressure-sensing materials that allow pressure to be measured according to resistance change that in turn results from changes in material size because of compressive force. The sensing material consists of a mixture of multi walled carbon nanotubes (MWCNTs) and TangoPlus, which gives it flexibility and elasticity. The tactile sensors used in this study were designed in the form of array structures composed of many lines so that single pressure points can be measured. To evaluate the performance of the flexible tactile sensor, we used specially designed signal-processing electronics and tactile sensors to experimentally verify the sensors' linearity. To test object grasp, tactile sensors were attached to the surface of the fingers of grippers with three degrees of freedom to measure the pressure changes that occur during object grasp. The results of these experiments indicate that the flexible tactile sensor-based robotic gripper can grasp objects and hold them in a stable manner.

A Study on Robot Hand Gripper Design and Robust Control for Assembly and Disassembly Task of Machine Parts (기계 부품의 조립분해 작업을 위한 로봇핸드 그리퍼 설계 및 견실제어에 관한 연구)

  • Jeong, Gyu-Hyun;Shin, Gi-Su;Noh, Yeon-Guk;Moon, Byeong-Gap;Yoon, Byeong-Seok;Bae, Ho-Young;Kim, Min-Seong;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.4
    • /
    • pp.299-305
    • /
    • 2017
  • This study proposes a new technique to design and control of robot hand gripper for assembling and disassembling of a machine parts. The motion equation describing dynamics of the manipulators and object together with geometric constraint is formulated by Lagrange-Euler's equation. And the problems of controlling both the grasping force and the rotation angle of the grasped object under the constraints are analyzed. The effect of geometric constraints and a method of computer simulation for overall system is verified. Finally, it is illustrated that even in case of there exists a sensory feedback from sensing data of the rotational angle of the object to command inputs control of joint and this feedback connection from sensing data to control grasping of machinery parts.

An Experimental Study on the Influential Factors of Flow Measurement with Coriolis Mass Flowmeter (코리올리스 질량유량계의 유량측정에 영향을 미치는 인자에 관한 실험적 연구)

  • Lim, Ki-Won;Lee, Woan-Kyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.12
    • /
    • pp.1699-1707
    • /
    • 2003
  • Coriolis mass flowmeter(CMF), which can measure the mass flow directly, is getting rapid attention for the industrial and custody transfer purpose. In order to study the characteristics and the applicability of CMF, it is tested with the national flow standard system. Two types of sensing tube, U-type and straight type, are employed in the test. Water, spindle oil and viscosity Standard Reference Material whose viscosities are 1, 20 and, 67 $\textrm{mm}^2$/s, respectively, are studied. It is shown that the linearity of CMF is getting deteriorated as the fluid viscosity increases, which is due to the zero drift and the relaxation time of the fluid. To test its applicability in the case of high pressured gas, it is calibrated using compressed air, It shows 1∼l.6 % deviations compared to the calibration results using water. It concludes that the fluid velocity in CMF should be lower than the sonic velocity. In addition, the effects of the vibration from the pipeline and pump on CMF as well as the long term stability are studied.

유연부품조립을 위한 시각측정시스템의 설계

  • Kim, Jin-Young;Cho, Hyung-Suck
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.4
    • /
    • pp.283-288
    • /
    • 2002
  • Unlike rigid parts, flexible parts can be deformed by contact force during assembly. In robotic assembly, information about their deformation as well as possible misalignment between the holes and their respective mating parts is essential for successful assembly. This paper presents a method to design a visual sensing system for measuring parts deformation and misalignment in flexible parts assembly. This paper performs ray-trace analysis of the system. A series of experiments for flexible parts assembly by using the implemented system are performed.

Characteristics of thick film Co2 sensors attached with Na2CO3-CaCO3 auxiliary phases (Na2CO3-CaCO3 보조상을 사용한 후막형 Co2 센서의 특성연구)

  • Shim, H.B.;Choi, J.W.;Kang, J.H.;Yoo, K.S.
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.168-172
    • /
    • 2006
  • Potentiometric $CO_{2}$ sensors were fabricated using a NASICON ($Na_{1+x}Zr_{2}Si_{X}P_{3-X}O_{12}$, 1.8 < x < 2.4) thick film and auxiliary layers. The powder of a precursor of NASICON with high purity was synthesized by a sol-gel method. By using the NASICON paste, an electrolyte was prepared on the alumina substrate by screen printing and then sintered at $1000^{\circ}C$ for 4 h. A series of $Na_{2}CO_{3}-CaCO_{3}$ auxiliary phases were deposited on the Pt sensing electrode. The electromotive force (emf) values were linearly dependent on the logarithm of $CO_{2}$ concentration in the range between 1,000 and 10,000 ppm. The device attached with $Na_{2}CO_{3}-CaCO_{3}$ (1:2 in mol.%) showed good sensing properties in the low temperatures.

Design of sensing element for 3-component load cell using parallel plate structure (병렬판구조를 이용한 3분력 로드셀 감지부의 설계)

  • Kim, Gap-Sun;Kang, Dae-Im;Jeong, Su-Yeon;Joo, Jin-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.11
    • /
    • pp.1871-1884
    • /
    • 1997
  • This paper describes the design process of a 3-component load cell with a multiple parallel plate structure which may be used to measure transverse forces and twisting moment simultaneously. Also we have derived equations to predict the bending strains on the surface of the beams in the multiple parallel plate structure under transverse force or twisting moment. It reveals that the bending strains calculated from the derived equations are in good agreement with the results from finite element analysis and experiment. Also we have evaluated the rated output and interference error of each component, which can be efficiently used to design a 3-component load cell with a multiple parallel plate structure.

Vibration-based identification of rotating blades using Rodrigues' rotation formula from a 3-D measurement

  • Loh, Chin-Hsiung;Huang, Yu-Ting;Hsiung, Wan-Ying;Yang, Yuan-Sen;Loh, Kenneth J.
    • Wind and Structures
    • /
    • v.21 no.6
    • /
    • pp.677-691
    • /
    • 2015
  • In this study, the geometrical setup of a turbine blade is tracked. A research-scale rotating turbine blade system is setup with a single 3-axes accelerometer mounted on one of the blades. The turbine system is rotated by a controlled motor. The tilt and rolling angles of the rotating blade under operating conditions are determined from the response measurement of the single accelerometer. Data acquisition is achieved using a prototype wireless sensing system. First, the Rodrigues' rotation formula and an optimization algorithm are used to track the blade rolling angle and pitching angles of the turbine blade system. In addition, the blade flapwise natural frequency is identified by removing the rotation-related response induced by gravity and centrifuge force. To verify the result of calculations, a covariance-driven stochastic subspace identification method (SSI-COV) is applied to the vibration measurements of the blades to determine the system natural frequencies. It is thus proven that by using a single sensor and through a series of coordinate transformations and the Rodrigues' rotation formula, the geometrical setup of the blade can be tracked and the blade flapwise vibration frequency can be determined successfully.

A Study on the Start-up Control for HDD Spindle Motors (HDD 스핀들 모터의 초기 구동 제어에 관한 연구)

  • Jeong, Jun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.869-873
    • /
    • 2008
  • Optimization method for the open loop commutation time intervals in HDD spindle start-up control is presented in this paper. A hard disk drive(HDD) uses a sensorless brushless DC motor(BLDC) for the platter rotation. Because there is no direct sensor for the rotor position, open loop commutations after sensing the rotor position at a standstill using inductive sensing method are performed to speed up the rotor up to a certain speed where the zero crossings of the back electromotive force(EMF) are measurable. Therefore successful open loop commutations are necessary for the stable start-up control of the spindle motors. Random neighborhood search(RNS) algorithm is introduced as a optimization technic in this paper. Rotor speed and its standard deviation are used as a cost function and commutation intervals obtained from the spindle motion equation are used as initial parameter values for the RNS. With the help of the proposed method optimized open loop commutation time intervals for the very low start-up current are acquired and tested. The experimental results shows that the proposed method can decrease the start-up failure rate of a HDD spindle motor.

  • PDF

Design and Evaluation of the Tension Sensor for Surgical Steel Wires (수술용 강선에 대한 인장력 측정센서의 설계 및 특성평가)

  • Joo, Jin-W;Lee, Bong-S
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.2
    • /
    • pp.261-271
    • /
    • 1997
  • This paper presents the design process and characteristic test results of tension sensors for measuring the ultimate tension forces of surgical wires. Three types of sensor were designed and tested for calibration. The first two types which transfer the wire tension to the sensing element by direct contact have too much hysterisis errors due to the firctional effect. This error can be considerably reduced in the modified structure, where a cover and a loading button is used to transfer force and moment to the sensing element. The strains predicted by theoretical equations agree well with those by finite element calculations neglecting friction and the strains by finite element analysis considering friction are in good agreement with those measured by four strain gages. The modified ring type tension sensor developed in this paper is expected to be useful for measuring the tension of surgical wires with nonlinearity of 1.31%FS, hysterisis of 5.74%FS and repeatability of 0.19%FS.