• Title/Summary/Keyword: force density method (FDM)

Search Result 5, Processing Time 0.02 seconds

Modified nonlinear force density method for form-finding of membrane SAR antenna

  • Xu, Rui;Li, DongXu;Liu, Wang;Jiang, JianPing;Liao, YiHuan;Wang, Jie
    • Structural Engineering and Mechanics
    • /
    • v.54 no.6
    • /
    • pp.1045-1059
    • /
    • 2015
  • Form-finding for cable-membrane structures is a delicate operation. During the last decades, the force density method (FDM) was considered to be an efficient method to address the problem. Many researchers were devoted to improving this method and proposed many methods such as natural force density method (NFDM), improved nonlinear force density method (INFDM), et al. In this paper, a modified nonlinear force density method (MNFDM) is proposed. In this method, the stresses of membrane elements were transformed to the force-densities of cable nets by an equivalent relationship, and then they can be used as initial conditions. By comparing with the forming finding results by using the FDM, NFDM, INFDM and MNFDM, it had demonstrated that the MNFDM presented in this paper is the most efficient and precise.

Numerical Study of Particle Collection and Entrainment in Electrostatic Precipitator (집진기내 입자 포집과 비산 문제에 대한 수치적 연구)

  • Kim, Ju-Hyeon;Kweon, Soon-Cheol;Kwon, Ki-Hwan;Lee, Sang-Hwan;Lee, Ju-Hee
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.1
    • /
    • pp.27-35
    • /
    • 2012
  • A numerical simulation for particle collection efficiency in a wire-plate electrostatic precipitator (ESP) has been performed. Method of characteristics and finite differencing method (MOC-FDM) were employed to obtain electric field and space charge density, and lattice boltzmann method (LBM) was used to predict the Electrohydrodynamic (EHD) flow according to the ion convection. Large eddy simulation (LES) was considered for turbulent flow and particle simulation was performed by discrete element method (DEM) which considered field charging, electric force, drag force and wall-collision. One way coupling from FDM to LBM was used with small and low density particle assumption. When the charged particle collided with the collecting plate, particle-wall collision was calculated for re-entertainment effect and the effect of gravity force was considered.

An Extended Force Density Method for the form finding of cable systems with new forms

  • Malerba, P.G.;Patelli, M.;Quagliaroli, M.
    • Structural Engineering and Mechanics
    • /
    • v.42 no.2
    • /
    • pp.191-210
    • /
    • 2012
  • The Force Density Method (FDM) is a well known and extremely versatile tool in form finding of cable nets. In its linear formulation such method makes it possible to find all the possible equilibrium configurations of a net of cables having a certain given connectivity and given boundary conditions on the nodes. Each singular configuration corresponds to an assumed force density distribution. Its improvement as Non-Linear Force Density Method (NLFDM) introduces the possibility of imposing assigned relative distances among the nodes, the tensile level in the elements and/or their initial undeformed length. In this paper an Extended Force Density Method (EFDM) is proposed, which makes it possible to set conditions in terms of given fixed nodal reactions or, in other words, to fix the positions of a certain number of nodes and, at the same time, to impose the intensity of the reaction force. Through such extension, the (EFDM) enables us to deal with form findings problems of cable nets subjected to given constraints and, in particular, with mixed structures, made of cables and struts. The efficiency and the robustness of method are assessed through comparisons with other form finding techniques in dealing with characteristic applications to the prestress design of cable systems. As a further extension, the EFDM is applied to structures having some parts not yet geometrically defined, as can happen in designing new creative forms.

Form-finding and Deformation Analysis of the Cable Nets for Mesh Reflector Antennas (메쉬 반사판 안테나의 케이블 네트 형상 설계 및 변형 해석)

  • Roh, Jin-Ho;Choi, Hye-Yoon;Jung, Hwa-Young;Song, Deok-Ki;Yun, Ji-Hyeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.9
    • /
    • pp.609-616
    • /
    • 2022
  • The performance of antenna reflectors crucially depends on the faceting error of the surface. The force density method (FDM) has been widely used for the form-finding analysis of the cable nets of reflectors. However, after performing form-finding of some cable nets, the effective reflective area will decrease. In addition, nonlinear deformations of the cable can not be achieved by using the FDM. Thus, an effective form-find methodology is proposed in this research. The whole parts of the cable networks are described by the absolute nodal coordinate formulation. The form-finding analysis of the reflector with standard configuration is performed to validate the proposed methodology. The influence of boundary condition changes on the configuration accuracy of the cable net is investigated.

A Fundamental Study for the Numerical Simulation Method of Green Water Occurrence on Bow Deck (선수부 갑판침입수의 수치시뮬레이션에 대한 기초연구)

  • Jeong, Kwang-Leol;Lee, Young-Gill;Kim, Nam-Chul
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.2
    • /
    • pp.188-195
    • /
    • 2010
  • Green water load is an important parameter to be considered in designing a modern ship or offshore structures like FPSO and FSRU. In this research, a numerical simulation method for green water phenomenon is introduced. The Navier-Stokes equations and the continuity equation are used as governing equations. The equations are calculated using Finite Difference Method(FDM) in rectangular staggered grid system. To increase the numerical accuracy near the body, the Cartesian cut cell method is employed. The nonlinear free-surface during green water incident is defined by Marker-density method. The green waters on a box in regular waves are simulated. The simulation results are compared with other experimental and computational results for verification. To check the applicability to moving ship, the green water of the ship which is towed by uniform force in regular wave, is simulated. The ship is set free to heave and to surge.