• 제목/요약/키워드: force density

검색결과 1,204건 처리시간 0.029초

3자유도 모터 제어를 위한 철심 솔레노이드 특성의 실험적 해석에 관한 연구 (A Study of the Iron-Core Solenoid Analysis for 3 D.O.F. Motor Control with Experimental Method)

  • 백윤수;박준혁
    • 대한기계학회논문집A
    • /
    • 제25권9호
    • /
    • pp.1334-1340
    • /
    • 2001
  • In this paper, the experimental modeling of the force between permanent magnet and iron-core solenoid is suggested for more accurate control of 3 D.O.F. motor using the electromagnetic force. In the case of iron-core solenoid, the general equation of solenoid cant be used simply because of its nonlinearity. Therefore, the magnetic flux density is estimated through the concept of equivalent permanent magnet. The force distribution between permanent magnet and iron-core solenoid is more dependent on the magnetization of iron core caused by the permanent magnet than any other parameters. Therefore, the equation of the force estimation between these magnetic systems can be modeled by the experimental function of the magnetization of iron core. Especially, if the distance between iron-core solenoid and permanent magnet is far enough, the force equation through experiment can be expressed from only the current of coil and the distance between iron-core solenoid and permanent magnet. It means that Coulombs law can be used for magnetic systems and it is validated through the experiment. Therefore, force calibration is performed by the concept of Coulombs law.

Experimental study on the interaction force between a permanent magnet and a superconducting roll stack

  • Wenxin Li;Tianhui Yang;Ying Xin
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제25권1호
    • /
    • pp.11-15
    • /
    • 2023
  • In recent years, the interaction force between a permanent magnet and a closed superconductor coil has been gradually investigated in depth. The principle and application potential of an energy storage/convertor composed of a magnet and a closed superconducting coil have been proved. However, the study on the force between a magnet and a non-closed superconducting coil (superconducting roll stack) has hardly been reported in previous literature. The behavior of this kind of interaction and its influence to the interaction force between a permanent and a closed superconducting coil are also still unclear. In this paper, first we investigated the interaction force between a magnet and a superconducting roll stack. Then, a series of experiments were designed and conducted to clarify the factors affected the interaction force, including the geometrical parameters of the superconducting roll stack and the magnetic field density at the roll stack. Moreover, the comparison of the interaction forces between the magnet and roll stack or a closed coil was also introduced.

Moving magnet type Slotless PMLSM의 end effect에 의한 detent force 최소화 (Detent force minimization caused by end effect of moving magnet type Slotless PMLSM)

  • 김미용;하태욱;정춘길;김규탁
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.33-35
    • /
    • 2003
  • This paper proposes inserted core type of slotless Permanent Magnet Linear Synchronous Motor(PMLSM) to improve its low thrust density. However, by inserting the core between windings of each phase, detent force is generated. Furthermore, linear motors have the feature of structurally limited length. So, it causes the end-effect in actual operation. So, this paper applies the neural network to this model to minimize detent force and maximize thrust. Also, sub-poles used the to the end parts of the mover for compensating the end-effect.

  • PDF

아크 용접에서 구동력에 따른 열 및 물질 유동에 관한 연구

  • 김원훈;나석주
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 1996년도 제7회 학술강연회논문집
    • /
    • pp.27-41
    • /
    • 1996
  • In this study the heat transfer and fluid flow of the molten pool in stationary gas tungsten arc welding using argon shielding gas were investigated. Transporting phenomena from the welding arc to the base material surface, such as current density, heat flux, arc pressure and shear stress acting on the weld pool surface, were taken from the simulation results of the corresponding welding arc. Various driving forces for the weld pool convection were considered, self-induced electromagnetic, surface tension, buoyancy, and impinging plasma arc forces. Furthermore, the effect of surface depression due to the arc pressure acting on the molten pool surface was considered. Because fusion boundary has a curved and unknown shape during welding, a boundary-fitted coordinate system was adopted to precisely describe the boundary for the momentum equation. The numerical model was applied to AISI 304 stainless steel and compared with the experimental results.

  • PDF

Analysis of mechanical characteristics of superconducting field coil for 17 MW class high temperature superconducting synchronous motor

  • Kim, J.H.;Park, S.I.;Im, S.H.;Kim, H.M.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제15권3호
    • /
    • pp.13-19
    • /
    • 2013
  • Superconducting field coils using a high-temperature superconducting (HTS) wires with high current density generate high magnetic field of 2 to 5 [T] and electromagnetic force (Lorentz force) acting on the superconducting field coils also become a very strong from the point of view of a mechanical characteristics. Because mechanical stress caused by these powerful electromagnetic force is one of the factors which worsens the critical current performance and structural characteristics of HTS wire, the mechanical stress analysis should be performed when designing the superconducting field coils. In this paper, as part of structural design of superconducting field coils for 17 MW class superconducting ship propulsion motor, mechanical stress acting on the superconducting field coils was analyzed and structural safety was also determined by the coupling analysis system that is consists of commercial electromagnetic field analysis program and structural analysis program.

MAGNETIC FLUX-CURRENT SURFACES OF MAGNETOHYDROSTATIC EQUILIBRIA

  • Choe, G.S.;Jang, Minhwan
    • 천문학회지
    • /
    • 제46권6호
    • /
    • pp.261-268
    • /
    • 2013
  • Magnetohydrostatic equilibria, in which the Lorentz force, the plasma pressure force and the gravitational force balance out to zero, are widely adopted as the zeroth order states of many astrophysical plasma structures. A magnetic flux-current surface is a surface, in which both magnetic field lines and current lines lie. We for the first time derive the necessary and sufficient condition for existence of magnetic flux-current surfaces in magnetohydrostatic equilibria. It is also shown that the existence of flux-current surfaces is a necessary (but not sufficient) condition for the ratio of gravity-aligned components of current density and magnetic field to be constant along each field line. However, its necessary and sufficient condition is found to be very restrictive. This finding gives a significant constraint in modeling solar coronal magnetic fields as force-free fields using photospheric magnetic field observations.

Tubular motor의 특성에 관한 연구 (A Study on the Analysis of the Characteristics of a tubular Moor-Trial Manufacure and the Characferistics in starting time-)

  • 임달호;이은웅;장석명
    • 전기의세계
    • /
    • 제28권3호
    • /
    • pp.72-77
    • /
    • 1979
  • The object of this paper is to try to develope Tulular Liner Induction Motor which consists of primary stator that generates traveling magnetic field from the three-phase winding of formed-wound concentric coil, and try to identify the characteristics of starting force. To indentify the theoretical starting force formular we have quoted the conventional Maxwell's basic equation and Poisson's equation which are used in the general machines thereby having obtained the formular of the current with in the conductor and of the air gap magnetic field respectively. General starting force formular is acquired by applying the formular of the current and magnetic field which was theoretically derived above. To this theoretically starting force formula various constants and the values of magnetic flux density resulting from the experimental motor are applied to present theoretically calculated values. Comparing these theoretically caculated values experimentally weighed values, we have proved the validity of theoretical research.

  • PDF

Halbach 배열 영구자석형 Planar Motor의 수직력 최소화 (Normal Force Minimization of the Synchronous Permanent Magnet Planar Motor with Halbach Magnet Array)

  • 김덕현;김규탁
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제55권11호
    • /
    • pp.582-588
    • /
    • 2006
  • This paper presents the characteristics analysis and normal force minimization of a synchronous permanent magnet planar motor(SPMPM) with Halbach magnet way. Firstly, the flux density distribution is calculated by analytical method; then, the characteristics of this SPMPM are evaluated, some experiments have been done to verify the analysis propriety and to investigate the interaction among the characteristics; At last, the normal force is minimized by using genetic algorithm and it is decreased from 672.83[N] to 144.24[N] remarkably.

Switched Reluctance 추진 원리에 기초한 자기 부상형 위치결정기구 (A Magnetic Suspension Stage Based on the Switched Reluctance Propulsion Principle)

  • 이상헌
    • 대한기계학회논문집A
    • /
    • 제30권6호
    • /
    • pp.622-630
    • /
    • 2006
  • This paper is about the magnetic suspension stage based on the Switched Reluctance propulsion principle. Because the previous studies on contact-free stage adopted the Lorentz force for main force generation mechanism they have suffered from thermal problem deteriorating the precision. Thus, the magnetic suspension stage adopting SR principle which can achieve high force density is proposed. The main operating principle and structure for achieving high resolution and long travel range are represented. The magnetic force analysis of each actuator, providing back data for dynamic modeling and controller design are carried out. By conducting basic experiments, the feasibility of the proposed system is shown. In addition the problems which should be improved and their solutions are represented.

절삭력의 동적 성분을 이용한 플랭크마모의 평가(I) (Flank Wear Estimation Using Dynamic Cutting Force(l))

  • Kwon, Y.K.;Oh, S.H.;Seo, N.S.
    • 한국정밀공학회지
    • /
    • 제14권8호
    • /
    • pp.115-121
    • /
    • 1997
  • The in-process detection of the tool wear is one of the most important technologies in completely auto- matic operation of machine tool. In this research, using the tools having flank wear, the dynamic compo- nent of cutting forces is considered to be available for identifying the cutting process. In order to investi- gate this relation in detail, the cutting forces in turning of workpiece made of aluminum were measured by dynamometer of piezoelectric type, and the dynamic components of cutting force were analyzed. The fre- quency analysis, probability density analysis and RMS analysis of the dynamic components were carried out independently. Through the experiments, the characteristics of the tool system have a large effect on the dynamic component of cutting forces. As a result, it is shown that the dynamic cutting force was able to detect flank wear accurately.

  • PDF