• Title/Summary/Keyword: force analysis

Search Result 9,594, Processing Time 0.04 seconds

Relationship between Hallux Valgus Severity and 3D Ground Reaction Force in Individuals with Hallux Valgus Deformity during Gait

  • Kim, Yong-Wook
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.16 no.3
    • /
    • pp.21-27
    • /
    • 2021
  • PURPOSE: This study examined the relationship between the severity of a hallux valgus (HV) deformity and the kinetic three-dimensional ground reaction force (GRF) through a motion analysis system with force platforms in individuals with a HV deformity during normal speed walking. METHODS: The participants were 36 adults with a HV deformity. The participants were asked to walk on a 6 m walkway with 40 infrared reflective markers attached to their pelvic and lower extremities. A camera capture system and two force platforms were used to collect kinetic data during gait. A Vicon Nexus and Visual3D motion analysis software were used to calculate the kinetic GRF data. RESULTS: This research showed that the anterior maximal force that occurred in the terminal stance phase during gait had a negative correlation with the HV angle (r = -.762, p < .01). In addition, the HV angle showed a low negative correlation with the second vertical maximal force (r = .346, p < .05) and a moderate positive correlation with the late medial maximal force (r = .641, p < .01). CONCLUSION: A more severe HV deformity results in greater abnormal translation of the plantar pressure and a significantly reduced pressure force under the first metatarsophalangeal joint.

An Analysis of Characteristics of Floor Dynamic Properties and Bang-machine Impact Force on Floating Floor Using System Analysis (시스템 해석을 이용한 뜬바닥구조에서의 바닥구조 동특성과 뱅머신의 충격력 특성 분석)

  • Mun, Dae-Ho;Park, Hong-Gun;Hwang, Jae-Seung;Hong, Geon-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.5
    • /
    • pp.390-398
    • /
    • 2014
  • Heavy-weight floor impact noise is directly related to the impact source and floor vibration property. Dynamic properties of the standard floating floor that is used in Korea was investigated using accelerance, acceleration energy spectral density(ESD), and structural modal test. In the standard floating floor, natural frequency was decreased by the finishing mortar mass and the damping ratio was increased. Bang-machine force spectrum acting on the concrete slab can be calculated using inverse system analysis. Impact force acting on concrete slab is changed by interaction of finishing mortar and resilient material. The amplitude of the bang-machine force spectrum was amplified in low frequency range(below 100 Hz), and over 100 Hz was decreased. Changed force spectrum influence to the response of structure vibration, so the heavy-weight floor impact noise level was changed.

CFD Analysis of Characteristic for Drag Force on leading Cab made of Composite Material (복합재 철도차량 전두부의 공기저항 특성 분석을 위한 유동해석)

  • Ko Taehwan;Song Younsoo;Hu Jin
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.38-42
    • /
    • 2004
  • The optimal design for a leading car considering the aerodynamic resistance is required on the high-speed train due to increasing of ratio of drag force with proportion for the square of velocity. The aerodynamic analysis using CFD in the stage of concept design offers more economical analysis method which is used to estimate the influence of flow and pressure around the leading car than the experimental method using the Mock-up. In this study, we want to assist the artistic design with aerodynamics analysis in order to get the optimal design for leading car made of composite material. The results of aerodynamic analysis for two leading car models, which one is expressed with lineal beauty and the other is with curvaceous beauty, are compared with each other and offer the proposal of modification for two models in order to decrease be drag force. The shape of curvaceous model is better for the pressure force but slightly worse for the viscous force than the other. The Fluent software is used for the calculation of flow profile in this study.

  • PDF

CFD Analysis of Drag Force on leading Cab of Tilting Train with 180km/h Service Speed (수치해석을 통한 180km/h급 틸팅차량 전두부의 주행 공기저항 해석)

  • Ko Taehwan;Song Younsoo;Han Seung-Ho
    • Proceedings of the KSR Conference
    • /
    • 2003.10c
    • /
    • pp.351-357
    • /
    • 2003
  • The optimal design for a leading car considering the aerodynamic resistance is required on the high-speed train due to increasing of ratio of drag force with proportion for the square of velocity. The aerodynamic analysis using CFD in the stage of concept design offers more economical analysis method which is used to estimate the influence of flow and pressure around the leading car than the experimental method using the Mock-up. In this study, we want to assist the artistic design with aerodynamics analysis in order to get the optimal design for leading car with the operation speed at 180km/h. The results of aerodynamic analysis for two leading car models which one is expressed with lineal beauty and the other is with curvaceous beauty are compared with each other and they offer the proposal of modification for two models in order to decrease the drag force. The shape of curvaceous model is better for the pressure force but slightly worse for the viscous force than the other. The Fluent software is used for the calculation of flow profile in this study.

  • PDF

Fault Detection of a Proposed Three-Level Inverter Based on a Weighted Kernel Principal Component Analysis

  • Lin, Mao;Li, Ying-Hui;Qu, Liang;Wu, Chen;Yuan, Guo-Qiang
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.182-189
    • /
    • 2016
  • Fault detection is the research focus and priority in this study to ensure the high reliability of a proposed three-level inverter. Kernel principal component analysis (KPCA) has been widely used for feature extraction because of its simplicity. However, highlighting useful information that may be hidden under retained KPCs remains a problem. A weighted KPCA is proposed to overcome this shortcoming. Variable contribution plots are constructed to evaluate the importance of each KPC on the basis of sensitivity analysis theory. Then, different weighting values of KPCs are set to highlight the useful information. The weighted statistics are evaluated comprehensively by using the improved feature eigenvectors. The effectiveness of the proposed method is validated. The diagnosis results of the inverter indicate that the proposed method is superior to conventional KPCA.

SW Program Development of a Real-Time Flight Data Acquisition and Analysis System for EO/IR Pod

  • Kim, Songhyon;Cho, Donghyurn;Lee, Sanghyun;Kim, Jongbum;Choi, Taekyu;Lee, Seungha
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.6
    • /
    • pp.42-49
    • /
    • 2021
  • To develop a high-resolution electro-optical/infrared (EO/IR) payload to be mounted on a high-speed and performance fighter aircraft in an external POD for acquiring daytime and nighttime image information on tactical targets, simulations, including flight environments and maneuvers, should be performed. Such simulations are pertinent to predicting the performance of several variables, such as aerodynamic force and inertia load acting on the payload. This paper describes the development of a flight data acquisition and analysis system based on flight simulation software (SW) for mission simulation of super-maneuverability fighter equipped with EO/IR payload. The effectiveness of the system is verified through comparison with actual flight data. The proposed flight data acquisition and analysis system based on FlightGear can be used as an M&S tool for system performance analysis in the development of the EO/IR payload.

Analysis of Metal Transfer using Dynamic Force Balance Model in GMAW (동적 힘 평형 모델을 이용한 GMA 용접의 용적이행 해석)

  • 최재형;이지혜;유중돈
    • Journal of Welding and Joining
    • /
    • v.19 no.4
    • /
    • pp.399-405
    • /
    • 2001
  • A dynamic force balance model is proposed in this work as an extension of the previous static force balance model to predict metal transfer in arc welding. Dynamics of a pendant drop is modeled as the second order system, which consists of the mass, spring and damper. The spring constant of a spherical drop at equilibrium is derived in the closed-form equation, and the inertia force caused by drop vibration is included in the drop detaching condition. While the inertia force is small in the low current range, it becomes larger than the gravitational force with current increase. The inertia force reaches half of the electromagnetic force at transition current, and has considerable effects on drop detachment. The proposed dynamic force balance model predicts the detaching drop size more accurately than the static force balance model.

  • PDF

Finite Element Analysis of Adhesive Contact of Torus-Shaped Bumps (토러스형 돌기의 흡착접촉 유한요소해석)

  • 조성산;양승민
    • Tribology and Lubricants
    • /
    • v.18 no.4
    • /
    • pp.249-254
    • /
    • 2002
  • Adhesive contact characteristics of torus-shaped bumps were analyzed using the finite element technique considering the adhesive force. Analyses focused on the effect of rim and bump radii on the adhesive contact behavior such as the jump-to-contact behavior, adhesion hysteresis, pull-off forces, contact region and pressure, and surface and subsurface stresses. Analysis results in the absence of adhesive force were also included to examine the effect of adhesive force. The applicability of torus-shaped bumps to the MEMS structure for reduction of friction is discussed.

토러스 형상 돌기의 흡착특성 유한요소해석

  • Jo, Seong-San;Yang, Seung-Min
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.179-184
    • /
    • 2002
  • Adhesive contact characteristics of torus-shaped bumps, which are commonly used to reduce friction and stiction in hard disks, are analyzed to examine the applicability to the MEMS structure. The analysis is conducted with the finite element technique considering the adhesive force. Torus-shaped bumps of various rim and bump radii are analyzed. The jump-to-contact behavior, adhesion hysterisis, pull-off forces, contact region and pressure, and surface and subsurface stresses are presented and discussed. Analysis results in the absence of adhesive force are also presented to identify the effect of adhesive force.

  • PDF

Transfer Function Analysis of Cylindrical Coil Springs by Considering Surging Effect (서징 효과를 고려한 원통형 코일 스프링의 전달 함수 해석)

  • 김대원;신중호
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.1
    • /
    • pp.145-151
    • /
    • 1998
  • This paper addresses the results of an experimental and analytical research of cylindrical coil spring subjected to dynamic behavior. Transfer functions are presented for both deflection and transmitted force as the output with force as the input. Steady state sinusoidal magnitude ratio and transmittance are plotted along with experimental data. It is shown that dynamic characteristic of cylindrical coil spring must be used to enhance the reability of vibration system dynamic behavior analysis in actuating over some frequency.

  • PDF