• Title/Summary/Keyword: food-borne microorganisms

Search Result 82, Processing Time 0.018 seconds

Optimization of Antimicrobial Activity Against Food-borne Pathogens in Grapefruit Seed Extract and a Lactic Acid Mixture (식품위해미생물에 대한 자몽종자 추출물과 젖산 혼합물의 항균효과 최적화)

  • Kim, Hae-Seop;Park, Jeong-Wook;Park, In-Bae;Lee, Young-Jae;Kim, Jeong-Mok;Jo, Yeong-Cheol
    • Food Science and Preservation
    • /
    • v.16 no.4
    • /
    • pp.472-481
    • /
    • 2009
  • Response surface methodology (RSM) is frequently used for optimization studies. In the present work, RSM was used to determine the antimicrobial activitiesof grapefruit seed extract (GFSE) and a lactic acid mixture (LA) against Staphylococcus aureus, Bacillus cereus, Escherichia coli, Salmonella typhimurium, Pseudomonas fluorescens, and Vibrio parahaemolyticus. A central composite design was used to investigate the effects of independent variables on dependent parameters. One set of antimicrobial preparations included mixtures of 1% (w/w) GFSE and 10% (w/w) LA, in which the relative proportions of component antimicrobials varied between 0 and 100%. In further experiments, the relative proportions were between 20% and 100%. Antimicrobial effects against various microorganisms were mathematically encoded for analysis. The codes are given in parentheses after the bacterial names, and were S. aureus ($Y_1$), B. cereus ($Y_2$), E. coli ($Y_3$), S. typhimurium ($Y_4$), P. fluorescens ($Y_5$), and V. parahaemolyticus ($Y_6$). The optimum antimicrobial activity of the 1% (w/w) GFSE:10% (w/w) LA mixture against each microorganism was obtained by superimposing contour plots ofantimicrobial activities on measures of response obtained under various conditions. The optimum rangesfor maximum antimicrobial activity of a mixture with a ratio of 1:10 (by weight) GFSE and LA were 35.73:64.27 and 56.58:43.42 (v/v), and the optimum mixture ratio was 51.70-100%. Under the tested conditions (a ratio of 1% [w/w] GFSE to 10% [w/w] LA of 40:60, and a concentration of 1% [w/w] GFSE and 10% [w/w] LA, 70% of the highest value tested), and within optimum antimicrobial activity ranges, the antimicrobial activities of the 1% (w/w) GFSE:10% (w/w) LA mixture against S. aureus ($Y_1$), B. cereus ($Y_2$), E. coli ($Y_3$), S. typhimurium ($Y_4$), P. fluorescens ($Y_5$), and V. parahaemolyticus ($Y_6$) were 24.55, 25.22, 20.20, 22.49, 23.89, and 28.04 mm, respectively. The predicted values at optimum conditions were similar to experimental values.

Antioxidative and Antimicrobial Activities of Euphorbia jolkini Extracts (암대극(Euphorbia jolkini Boiss) 추출물의 항산화 및 항균활성)

  • Kim, Ji-Young;Lee, Jung-A;Yoon, Weon-Jong;Oh, Dae-Ju;Jung, Yong-Hwan;Lee, Wook-Jae;Park, Soo-Yeong
    • Korean Journal of Food Science and Technology
    • /
    • v.38 no.5
    • /
    • pp.699-706
    • /
    • 2006
  • The antioxidative and antimicrobial activities of Euphorbia jolkini extracts were investigated. Total polyphenohc compounds extracted were approximately as follows: 162.08 mg/g from ethanol, 12.64 mg/g from n-hexane, 48.11 mg/g from dichloromethane, 544.08 mg/g from ethyl acetate, 176.42 mg/g from butanol, and 30.00 mg/g from water. The ethylacetate fraction of this extraction showed the highest antioxidative activity $(IC_{50})$: DPPH radical scavenging capacity was measured at $8.38\;{\mu}g/mL$, xanthine oxidase inhibitory activity was $466.01\;{\mu}g/mL$, superoxide radical scavenging capacity was $11.39\;{\mu}g/mL$, and nitric oxide scavenging capacity was $332.11\;{\mu}g/mL$. Antimicrobial activities were determined by paper disc method and minimum inhibitory concentration of E. jolkini extracts against food-borne pathogens and spoilage bacteria. The growth inhibition curves of E. jolkini extracts against Bacillus cereus, Listeria monocytogenes, and Escherichia coli were also determined. These results suggest that the ethylacetate fraction of E. jolkini has strong antimicrobial activity against the all species of microorganisms as well as strong antioxidant activity.