• Title/Summary/Keyword: food processing wastewater

Search Result 36, Processing Time 0.027 seconds

Treatment of Food Processing Wastewater bearing Furfural by Candida utilis (Candida utilis를 이용한 furfural 함유 식품가공 폐수의 처리)

  • 박기영;정진영
    • KSBB Journal
    • /
    • v.18 no.4
    • /
    • pp.272-276
    • /
    • 2003
  • A yeast treatment process was applied to treat food processing organic wastewater containing inhibitory material to anaerobic bacteria. The wastewater contained high concentration of the furfural as a by-product from the food processing. Aerobic yeast (Candida utilis) was selected to remove organics in wastewater. The batch test showed that the wastewater had an inhibition to anaerobic bacteria. The optimum level of temperature for yeast treatment was ranged from 25 to 45$^{\circ}C$. The pH range from 4 to 8 was favorable to yeast growth. The continuous flow reactor was operated at various SRTs. The results were satisfactory with the reduction of COD up to 90% at SRT of more than 1 day. Through the kinetic study of the yeast, the remained COD concentration was mainly caused by the formation of soluble microbial product (SMP).

A Study on the Improvement of Effluent Treatment from Small Scale Agro-food Processes (소규모 농산가공시설 배출수 처리시설 개선방안)

  • Kim, Youngjin;Jeon, Jonggil;Kim, Minyoung;Choi, Yonghun
    • Journal of Agricultural Extension & Community Development
    • /
    • v.23 no.4
    • /
    • pp.361-374
    • /
    • 2016
  • This study examined the regulation status on wastewater treatment in agro-food processing and a case study on effluent treatment m ethods was carried out to evaluate any change after the mitigation of regulation. First, in order to clarify the area of investigation, the definition of small-scale agro-processing facilities was reviewed through literature survey and local government ordinance. The current law were separately analyzed into four areas; effluent treatment facilities, development of agro-processing industries, land use and food processes equipment. The exclusion clauses on wastewater discharging facility in the enforcement regulation were defined in detail, which can be served in practice. Site survey, after the questionnaire survey of the person in charge of the local unit, was carried out. As the result, this survey confirmed the positive effects of the deregulation on promoting sewer system service in rural areas, introducing the new processing construction and so on. In addition, it was found that some matters to be considered to determine whether to introduce wastewater treatment plan for public food processing facilities.

Conversion of Organic Carbon in Food Processing Wastewater to Photosynthetic Biomass in Photo-bioreactors Using Different Light Sources

  • Suwan, Duangkamon;Chitapornpan, Sukhuma;Honda, Ryo;Chiemchaisri, Wilai;Chiemchaisri, Chart
    • Environmental Engineering Research
    • /
    • v.19 no.3
    • /
    • pp.293-298
    • /
    • 2014
  • An anaerobic photosynthetic treatment process utilizing purple non-sulfur photosynthetic bacteria (PNSB) was applied to the recovery of organic carbon from food processing wastewater. PNSB cells, by-product from the treatment, have high nutrition such as proteins and vitamins which are a good alternative for fish feed. Effects of light source on performance of anaerobic photosynthetic process were investigated in this study. Two bench-scale photo-bioreactors were lighted with infrared light emitting diodes (LEDs) and tungsten lamps covered with infrared transmitting filter, respectively, aiming to supply infrared light for photosynthetic bacteria growth. The photo-bioreactors were operated to treat noodle-processing wastewater for 323 days. Hydraulic retention time (HRT) was set as 6 days. Organic removals in the photo-bioreactor lighted with infrared LEDs (91%-95%) was found higher than those in photo-bioreactor with tungsten lamps with filter (79%-83%). Biomass production in a 150 L bench-scale photo-bioreactor was comparable to a 8 L small-scale photo-bioreactor in previous study, due to improvement of light supply efficiency. Application of infrared LEDs could achieve higher treatment performance with advantages in energy efficiency and wavelength specifity.

Removal characteristics of organic matter during pretreatment for membrane-based food processing wastewater reclamation

  • Jang, Haenam;Lee, Wontae
    • Membrane and Water Treatment
    • /
    • v.9 no.4
    • /
    • pp.205-210
    • /
    • 2018
  • In this study, we investigated coagulants such as polyaluminum chloride (PACl) and ferric chloride ($FeCl_3$) and the combination of a coagulant and powdered activated carbon (PAC) for the removal of dissolved organic matter (DOM) from fish processing effluent to reduce membrane fouling in microfiltration. The efficiency of each pretreatment was investigated through analyses of dissolved organic carbon (DOC) and ultraviolet absorbance at 254 nm ($UVA_{254}$). Membrane flux and silt density index (SDI) analyses were performed to evaluate membrane fouling; molecular weight distributions (MWD) and fluorescence excitation-emission matrix (FEEM) spectroscopy were analyzed to assess DOM characteristics. The results demonstrated that $FeCl_3$ exhibited higher DOC and $UVA_{254}$ removals than PACl for food processing effluent and a combination of $FeCl_3$ and PAC provided comparatively better results than simple $FeCl_3$ coagulation for the removal of DOM from fish processing effluent. This study suggests that membrane fouling could be minimized by proper pretreatment of food processing effluent using a combination of coagulation ($FeCl_3$) and adsorption (PAC). Analyses of MWD and FEEM revealed that the combination of $FeCl_3$ and PAC was more efficient at removing hydrophobic and small-sized DOM.

Influence of Adding Recovered Protein from Processing Wastewater on the Quality of Mechanically Separated Chicken Meat Surimi Like-Material

  • Cortez-Vega, William Renzo;Fonseca, Gustavo Graciano;Bagatini, Daniela Cardozo;Prentice, Carlos
    • Food Science of Animal Resources
    • /
    • v.37 no.2
    • /
    • pp.162-167
    • /
    • 2017
  • Functional and nutritional soluble proteins can be recovered from surimi (and surimi-like material) processing wastewater, reducing environmental problems and the cost of an irresponsible waste disposal. Recovered proteins may be added back at a low percentage to surimi products. The aim of this work was to evaluate the effect of the addition of soluble recovered proteins (RP), obtained from mechanically separated chicken meat surimi-like material (MSCM-SLM) processing wastewater by acidic pH-shifting, on the composition and texture of RP-MSCM-SLM, with RP contents of 0, 10, 20 and 30% (w/w) in the mixture. For that, proximate composition and gel properties were evaluated. The fat content of the MSCM-SLM was significantly reduced to 11.98% and protein increased to 83.64% (dry basis) after three washing cycles. The addition of 30% RP in the MSCM-SLM significantly augmented the protein content to 93.45% and reduced fat content from to 2.78%. On the other hand, the addition of RP was responsible for a drastic decrease in texture parameters, reaching 252.36 g, 185.23 g.cm, and 6.97 N for breaking force, gel strength and cutting strength, respectively, when 30% of RP was included in the MSCM-SLM. It was concluded that the obtained intermediary product (RP-MSCM-SLM) is a good option to applications in processed meat products where high texture parameters are dispensable, e.g., emulsified inlaid frankfurter-type sausages, but high protein content and low fat content desired.

Food Processing Wastewater Treatment with Ejector-Type Aerator (Ejector형 포기장치를 이용한 식품가공폐수를 처리)

  • 정용현
    • Journal of Environmental Science International
    • /
    • v.8 no.2
    • /
    • pp.221-225
    • /
    • 1999
  • This study was conducted to evaluate the treatment efficiency including reaction kinetics and hydraulic characteristics of food processing wastewater by using an ejector-type aeration system (ETAS) in activated sludge process. The oxygen transfer efficiency in ETAS can be changed in accordance with the depth of reactor. However, the optimum air velocity was found less than 1.82 m/hr at a superficial liquid velocity of 634 m/hr. The ETAS process showed higher organic material removal efficiency than that of the existing activated sludge process under hydraulic detention time 6 to 12 hours. This process, which can maintain MLVSS highly, is able to have high organic material removal efficiency at short HRT and deal with variable organic material loading.

  • PDF

Survey and Economic Analysis of Food Industry Residues for Biomass-to-energy Conversion in Merced and Stanislaus Counties, California, USA (바이오에너지로의 전환을 위한 캘리포니아 식품가공공장 오.폐수 특성 조사 및 경제성 분석)

  • Kim, Dae-Hyun
    • Journal of Biosystems Engineering
    • /
    • v.34 no.4
    • /
    • pp.243-253
    • /
    • 2009
  • This research expands investigations into the biomass resource potential associated with California's food processing industry by surveying industries within a two county region in the San Joaquin Valley, California, USA. A previous survey conducted in 2005 for the Sacramento Municipal Utility District (SMUD) quantified residue and waste generation from food processors and food preparation businesses in the Sacramento region. The present survey investigates residue and waste streams from food processors located in Merced and Stanislaus Counties. Sixty food processors were identified to participate in the survey, of which 49 responded (82%) and data were acquired for 38 (63%) (6 facilities closed or moved, 8 decided not to participate). Within the two counties, total annual waste among survey respondents amounted to 24,044 dry tons of high moisture (${\geq}$60%) food residuals, 5,358 dry tons of low moisture (<60%) food residuals; and 23.7 million $m^3$ of wastewater containing 38,814 tons of biochemical oxygen demand ($BOD_5$). The total potential electric power generation from these food residues was estimated at approximately $7\;MW_e$. Total solid waste resource included in the survey response was estimated at about 10% of statewide residue generation for processors falling within the Standard Industrial Classification (SIC) System Major Group 20 (Food and Kindred Products) categories.

Utilization of Crawfish Processing Wastes as Carotenoids, Chitin, and Chitosan Sources (캐로티노이드 , 키틴, 키토산의 원료로서 Crawfish 가공 폐기물의 이용)

  • No, hong-Hyoon;Samuel P.Meyers
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.21 no.3
    • /
    • pp.319-326
    • /
    • 1992
  • The Louisiana crawfish industry comprises the largest concentration of crustacean aquaculture in the United States. Processing plants throughout the culture region annually generate as much as 80 million pounds of peeling waste during recovery of the 15% (by weight) edible tail meat. A commercial oil extraction process for recovery of carotenoid astaxanthin from crawfish waste has been developed. Crawfish pigment in its various forms finds applications as a source of red intensifying agents for use in aquaculture and poultry industries. Crawfish shell, separated in the initial pigment extraction step, is an excellent source of chitin. Applicable physicochemical procedures for isolation of chitin from crawfish shell and its conversion to chitosan have been developed. Crawfish chitosan has been demonstrated to be both an effective coagulant and ligand-exchange column material , respectively, for recovery of valuable organic compounds from seafood processing wastewater.

  • PDF

Electricity Generation from Volatile Fatty Acids (VFAs) Using a Microbial Fuel Cell (휘발성지방산으로부터 미생물연료전지에 의한 전기 생산)

  • Oh, S.E.;Kim, S.J.;Yang, J.E.;Jung, Y.S.
    • Korean Journal of Environmental Agriculture
    • /
    • v.26 no.2
    • /
    • pp.179-185
    • /
    • 2007
  • A new technology that utilizes a microbial fuel cell (MFC) has been developed to generate electricity directly from the oxidation of organic matters such as carbohydrates or complex organics in wastewater. Fermentation of these organic matters results in production of volatile fatty acids (VFAs), alcohols, $CO_2$ and $H_2$. We investigated the electricity-producing potential of the VFAs and actual food processing wastewater using a two-chambered MFC. The electrons produced by acetate degradation were proportional to acetate concentration in the medium. Acetate concentration and generated power were linearly correlated at a low range or acetate concentration (< 8 mg/L), but at above 8 mg/L of acetate the power produced was maintained at 0.1 mW. When butyrate was added to the anode acclimated to acetate, there was a lag period of 30 hr for electricity generation. However, when propionate was added to the same anode bottle, lag periods were not existed. The wastewater from baby food processing generated the maximum power density of $81{\pm}7\;mW/m^2$ of electricity and exhibited the Coulombic efficiencies of 27.1% and 40.5% based on TCOD and SCOD, respectively. Sugars in the food processing wastewater were reduced within 50 h from 230 mg/L < 30 mg/L.