• Title/Summary/Keyword: food polymer

Search Result 310, Processing Time 0.035 seconds

Cellulosic Ethanol as Renewable Alternative Fuel (신재생 대안 에너지로서의 셀룰로스 에탄올)

  • Cho, Woo-Suk;Chung, Yu-Hee;Kim, Bo-Kyung;Suh, Su-Jeoung;Koh, Wan-Soo;Choe, Sung-Hwa
    • Journal of Plant Biotechnology
    • /
    • v.34 no.2
    • /
    • pp.111-118
    • /
    • 2007
  • Global warming crisis due primarily to continued green house gas emission requires impending change to renewable alternative energy than continuously depending on exhausting fossil fuels. Bioenergy including biodiesel and bioethanol are considered good alternatives because of their renewable and sustainable nature. Bioethanol is currently being produced by using sucrose from sugar beet, grain starches or lignocellulosic biomass as sources of ethanol fermentation. However, grain production requires significant amount of fossil fuel inputs during agricultural practices, which means less competitive in reducing the level of green house gas emission. By contrast, cellulosic bioethanol can use naturally-growing, not-for-food biomass as a source of ethanol fermentation. In this respect, cellulosic ethanol than grain starch ethanol is considered a more appropriate as a alternative renewable energy. However, commercialization of cellulosic ethanol depends heavily on technology development. Processes such as securing enough biomass optimized for economic processing, pretreatment technology for better access of polymer-hydrolyzing enzymes, saccharification of recalcitrant lignocellulosic materials, and simultaneous fermentation of different sugars including 6-carbon glucose as well as 5-carbon xylose or arabinose waits for greater improvement in technologies. Although it seems to be a long way to go until commercialization, it should broadly benefit farmers with novel source of income, environment with greener and reduced level of global warming, and national economy with increased energy security. Mission-oriented strategies for cellulosic ethanol development participated by government funding agency and different disciplines of sciences and technologies should certainly open up a new era of renewable energy.

Evaluation of soybean oil rancidity by pentanal and hexanal determination (Pentanal과 hexanal 측정에 의한 대두유의 산패도 측정)

  • Chun, Ho-Nam;Kim, Ze-Uook
    • Applied Biological Chemistry
    • /
    • v.34 no.2
    • /
    • pp.149-153
    • /
    • 1991
  • Several commercial soybean oils were stored at $20^{\circ}C,\;40^{\circ}C$ and $60^{\circ}C$ with daily exposure of fluorescent light for 12 hours and evaluated their rancidity by headspace gas chromatographic analysis of pentanal and hexanal. The data of gas chromatographic analysis was compared with organoleptic flavor evaluation. For headspace gas chromatographic analysis, the volatile compounds were recovered by porous polymer trap and flushed into a fused silica capillary column at $250^{\circ}C$, The pentanal and hexanal separated were identified by gas chromatography and gas chromatography-mass spectrometric method. The results showed that the contents of pentanal and hexanal were linearly increased during storage for 100 days. A very simple linear relationship was found between organoleptic flavor scores and amounts of two volatile compounds with very high correlation coefficient. A similar linear relationship was also obtained for acid and peroxide value with sensory data. This results suggested the possible implication of pentanal and hexanal as an quality index for rancidity evaluation of soybean oil.

  • PDF

A Study on Morphology and Mechanical Properties of Biodegradable Polymer Nanocomposites (생분해성 고분자 나노복합체의 형태학 및 기계적 특성 연구)

  • Jang, Sang Hee
    • Clean Technology
    • /
    • v.19 no.4
    • /
    • pp.401-409
    • /
    • 2013
  • BBiodegradable polymers have attracted great attention because of the increased environmental pollution by waste plastics. In this study, PLA (polylactic acid)/Clay-20 (Cloisite 20) and PLA (polylactic acid)/PBS (poly(butylene succinate)/Clay-20 (Cloisite 20) nanocomposites were manufactured in a twin-screw extruder. Specimens for mechanical properties of PLA/Clay-20 and PLA/PBS (90/10)/Clay-20 nanocomposites were prepared by injection molding. Thermal, mechanical, morphological and raman spectral properties of two nanocomposites were investigated by differential scanning calorimetry (DSC), tensile tester, scanning electron microscopy (SEM) and raman-microscope spectrophotometer, respectively. In addition, hydrolytic degradation properties of two nanocomposites were investigated by hydrolytic degradation test. It was confirmed that the crystallinity of PLA/Clay-20 and PLA/PBS/Clay-20 nanocomposite was increased with increasing Clay-20 content and the Clay-20 is miscible with PLA and PLA/PBS resin from DSC and SEM results. Tensile strength of two nanocomposites was decreased, but thier elongation, impact strength, tensile modulus and flexural modulus were increased with an increase of Clay-20 content. The impact strength of PLA/Clay-20 and PLA/PBS/Clay-20 nanocomposites with 5 wt% of Clay-20 content was increased above twice than that of pure PLA and PLA/PBS (90/10). The hydrolytic degradation rate of PLA/Clay-20 nanocomposite with 3 wt% of Clay-20 content was accelerated about twice than that of pure PLA. The reason is that degradation may occur in the PLA and Clay-20 interface easily because of hydrophilic property of organic Clay-20. It was confirmed that a proper amount of Clay-20 can improve the mechanical properties of PLA and can control biodegradable property of PLA.

Acute Toxicity Assessment of New Algicides, Thiazolidinedione Derivative (TD49) to Marine Ecosystem (신규 살조물질인 Thiazolidinedione 유도체 (TD49)의 해양생태계에 대한 급성독성평가)

  • Yim, Eun-Chae;Shin, Jun-Jae;Park, In-Taek;Han, Hyo-Kyung;Kim, Si-Wouk;Cho, Hoon;Kim, Seong-Jun
    • KSBB Journal
    • /
    • v.25 no.6
    • /
    • pp.527-532
    • /
    • 2010
  • A thiazolidinedione derivative, TD49 with the highly selective algicide to red tide was newly synthesized and its acute toxicity was examined in order to evaluate the effect on aquatic ecosystems of coast. Major three species having important role in the food chain of marine ecosystem, such as Skeletonema costatum of microalgae, Daphnia magna of crustacea, Paralichthys olivaceus of flatfish fingerling were employed for the acute toxicity assessment. $EC_50$ or $LC_50$ as the assessment criterion was investigated to each specie, and NOEC (No Observed Effect Concentration) and PNEC (Predicted No Effect Concentration) from most sensitive specie to toxicity of TD49 were further calculated. $EC_50$ of S. costatum in 96-hour, $EC_50$ of D. magna in 48-hour, and $LC_50$ of P. olivaceus in 72-hour for TD49 were $0.34\;{\mu}M$, $0.68\;{\mu}M$, and $0.58\;{\mu}M$, respectively. NOEC from the results of S. costatum was estimated to be $0.20\;{\mu}M$ and PNEC was estimated as 3.40 nM by applying factor value of 100 to $EC_50$ $0.34\;{\mu}M$ of S. costatum. In addition, it was revealed that Solutol used as the dispersing agent of TD49 had very little toxic influence under the concentration range of $0{\sim}0.4\;{\mu}M$ used in TD49 toxicity experiment. Although the estimated concentration of TD49 that will be sprayed onto the coastal field for the algicide is higher than NOEC value, it is considered that the spraying concentration would not be a considerable problem due to a dilution effect by tide at the opened coast.

A portable electronic nose (E-Nose) system using PDA device (개인 휴대 단말기 (PDA)를 기반으로 한 휴대용 E-Nose의 개발)

  • Yang, Yoon-Seok;Kim, Yong-Shin;Ha, Seung-Chul;Kim, Yong-Jun;Cho, Seong-Mok;Pyo, Hyeon-Bong;Choi, Chang-Auck
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.69-77
    • /
    • 2005
  • The electronic nose (e-nose) has been used in food industry and quality controls in plastic packaging. Recently it finds its applications in medical diagnosis, specifically on detection of diabetes, pulmonary or gastrointestinal problem, or infections by examining odors in the breath or tissues with its odor characterizing ability. Moreover, the use of portable e-nose enables the on-site measurements and analysis of vapors without extra gas-sampling units. This is expected to widen the application of the e-nose in various fields including point-of-care-test or e-health. In this study, a PDA-based portable e-nose was developed using micro-machined gas sensor array and miniaturized electronic interfaces. The rich capacities of the PDA in its computing power and various interfaces are expected to provide the rapid and application specific development of the diagnostic devices, and easy connection to other facilities through information technology (IT) infra. For performance verification of the developed portable e-nose system, Six different vapors were measured using the system. Seven different carbon-black polymer composites were used for the sensor array. The results showed the reproducibility of the measured data and the distinguishable patterns between the vapor species. Additionally, the application of two typical pattern recognition algorithms verified the possibility of the automatic vapor recognition from the portable measurements. These validated the portable e-nose based on PDA developed in this study.

Quantitative Analysis of Milk-Derived microRNAs and Microbiota during the Manufacturing and Ripening of Soft Cheese

  • Oh, Sangnam;Park, Mi-Ri;Ryu, Sangdon;Maburutse, Brighton E.;Kim, Ji-Uk;Kim, Younghoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.9
    • /
    • pp.1566-1575
    • /
    • 2017
  • MicroRNAs (miRNAs) are abundant in bovine milk and milk derived from other livestock, and they have functional roles in infants and in the secretion process of mammary glands. However, few studies have evaluated miRNAs in dairy processes, such as during cheese making and ripening. Thus, we investigated the characteristics of milk-derived miRNAs during the manufacturing and ripening of Camembert cheese as well as the microbiota present using the quantitative reverse transcription polymer chain reaction (RT-qPCR) and 16S rRNA pyrosequencing, respectively. Pyrosequencing showed that the cheese microbiota changed dramatically during cheese processing, including during the pasteurization, starter culture, and ripening stages. Our results indicated that the RNA contents per $200mg/200{\mu}l$ of the sample increased significantly during cheese-making and ripening. The inner cheese fractions had higher RNA contents than the surfaces after 12 and 22 days of ripening in a time-dependent manner (21.9 and 13.2 times higher in the inner and surface fractions than raw milk, respectively). We performed a comparative analysis of the miRNAs in each fraction by RT-qPCR. Large amounts of miRNAs (miR-93, miR-106a, miR-130, miR-155, miR-181a, and miR-223) correlated with immune responses and mammary glands were present in aged cheese, with the exception of miR-223, which was not present on the surface. Considerable amounts of miRNAs were also detected in whey, which is usually disposed of during the cheese-making process. Unexpectedly, there were no significant correlations between immune-related miRNAs and the microbial populations during cheese processing. Taken together, these results show that various functional miRNAs are present in cheese during its manufacture and that they are dramatically increased in amount in ripened Camembert cheese, with differences according to depth.

The Degradation Study of Polyethylene Based Mulching Films with Compatibilizer and Biomass (바이오매스 부산물에 상용화제를 첨가하여 제조한 멀칭필름의 분해 실태 연구)

  • Choi, Jae-Suk;Ahn, Kihyeon;Lee, Roun;Park, UoonSeon;Han, Jung-Gu;Chung, Sung Taek;Park, Hyung Woo
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.28 no.2
    • /
    • pp.105-113
    • /
    • 2022
  • Mulching film was produced by LDPE and LLDPE adding biomass byproducts and MA(maleic anhydride), talc/clay/CaO/CaCO3. And also surveyed to tensile strength, elongation, TGA and DSC according to the UV irradiation time. The tensile strength and elongation showed 20 N/cm2 and 5% after UV irradiation 100 hours, and those was nearly 0 N/cm2 and 0% after 200 hours, respectively. TGA of film was showed to peak of polymer itself, and DSC was slightly higher than that of initial value. At the pilot scale test, we were able to see the differentiate of degradation between control and developed film after 12 weeks, and also torn off at several part of mulching film. The degradation of mulching film after growing corn showed similar to a pilot scale test. Above the results, the developed mulching film adding biomass will be to used for agricultural farming.

Effects of Low Level of Levan Feeding on Serum Lipids, Adiposity and UCP Expression in Rats (저농도 레반 공급이 혈중 지질 및 체지방 형성과 UCP 발현에 미치는 영향)

  • 강순아;홍경희;장기효;김소혜;조여원
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.31 no.5
    • /
    • pp.788-795
    • /
    • 2002
  • This study described the effect of levan (9-2,6-linked fructose polymer) feeding on serum lipids, adiposity and uncoupling protein (UCP) expression in growing rats. Levan was synthesized from sucrose using bacterial levansucrase. UCP is a mitochondrial protein that uncouples the respiratory chain from oxidative Phosphorylation and generates heat instead of ATP, thereby increase energy expenditure. We observed that 3% or 5% levan containing diet reduced serum triglyceride levels, visceral and peritoneal fat mass and induced the UCP expression in rats fed high fat diet in previous study. To determine whether the intake of low level of levan may have the hypolipidemic and anti-obesity effect, 4 wk old Sprague Dawley male rats were fed AIN-76A diet for 6 wk, and sub-sequently fed 1% or 2% levan solution for further 5 wk. Intake of 1% levan in liquid form reduced serum triglyceride and serum total cholesterol levels to 50% and 66% of control group, respectively. Although epididymal and peritoneal fat masses were not affected by levan feeding, visceral fat mass was lower in 1% levan group compared to control group. The expression of UCP2 mRNA in brown adipose tissue, skeletal muscle and hypothalamus and UCP3 mRNA in skeletal muscle were not changed by levan feeding, while the UCP2 mRNA in white adipose tissue was up-regulated by levan feeding. In conclusions, intake of low level of levan solution reduced serum triglyceride and total cholesterol, restrained the visceral fat accumulation and increased UCP expression in white adipose tissue in rats. This study suggests that hypolipidemic and anti-obesity effect of levan attributed to anti-lipogenesis and inefficeint energy utilization by up-regulation of UCPs.

Effect of Cardanol Content on the Antibacterial Films Derived from Alginate-PVA Blended Matrix (알지네이트-폴리비닐알콜 블랜드 항균 필름 제조를 위한 카다놀 함량의 영향)

  • Ahn, Hee Ju;Kang, Kyung Soo;Song, Yun Ha;Lee, Da Hae;Kim, Mun Ho;Lee, Jae Kyoung;Woo, Hee Chul
    • Clean Technology
    • /
    • v.28 no.1
    • /
    • pp.24-31
    • /
    • 2022
  • Petroleum-based plastics are used for various purposes and pose a significant threat to the earth's environment and ecosystem. Many efforts have been taken globally in different areas to find alternatives. As part of these efforts, this study manufactured alginate-based polyvinyl alcohol (PVA) blended films by casting from an aqueous solution prepared by mixing 10 wt% petroleum-based PVA with biodegradable, marine biomass-derived alginate. Glutaraldehyde was used as a cross-linking agent, and cardanol, an alkyl phenol-based bio-oil extracted from cashew nut shell, was added in the range of 0.1 to 2.0 wt% to grant antibacterial activity to the films. FTIR and TGA were performed to characterize the manufactured blended films, and the tensile strength, degree of swelling, and antibacterial activity were measured. Results obtained from the FTIR, TGA, and tensile strength test showed that alginate, the main component, was well distributed in the PVA by forming a matrix phase. The brittleness of alginate, a known weakness as a single component, and the low thermal durability of PVA were improved by cross-linking and hydrogen bonding of the functional groups between alginate and PVA. Addition of cardanol to the alginate-based PVA blend significantly improved the antibacterial activity against S. aureus and E. coli. The antibacterial performance was excellent with a death rate of 98% or higher for S. aureus and about 70% for E. coli at a contact time of 60 minutes. The optimal antibacterial activity of the alginate-PVA blended films was found with a cardanol content range between 0.1 to 0.5 wt%. These results show that cardanol-containing alginate-PVA blended films are suitable for use as various antibacterial materials, including as food packaging.

Development of a Molecular Selection Marker for Bacillus licheniformis K12 (Bacillus licheniformis K12 균주 분자 선발 마커 개발)

  • Young Jin Kim;Sam Woong Kim;Tae Wok Lee;Won-Jae Chi;Woo Young Bang;Ki Hwan Moon;Tae Wan Kim;Kyu Ho Bang;Sang Wan Gal
    • Journal of Life Science
    • /
    • v.33 no.10
    • /
    • pp.808-819
    • /
    • 2023
  • This study was conducted to develop a selection marker for the identification of the Bacillus licheniformis K12 strain in microbial communities. The strain not only demonstrates good growth at moderate temperatures but also contains enzymes that catalyze the decomposition of various polymer materials, such as proteases, amylases, cellulases, lipases, and xylanases. To identify molecular markers appropriate for use in a microbial community, a search was conducted to identify variable gene regions that show considerable genetic mutations, such as recombinase, integration, and transposase sites, as well as phase-related genes. As a result, five areas were identified that have potential as selection markers. The candidate markers were two recombinase sites (BLK1 and BLK2), two integration sites (BLK3 and BLK4), and one phase-related site (BLK5). A PCR analysis performed with different Bacillus species (e.g., B. licheniformis, Bacillus velezensis, Bacillus subtilis, and Bacillus cereus) confirmed that PCR products appeared at specific locations in B. licheniformis: BLK1 in recombinase, BLK2 in recombinase family protein, and BLK3 and BLK4 as site-specific integrations. In addition, BLK1 and BLK3 were identified as good candidate markers via a PCR analysis performed on subspecies of standard B. licheniformis strains. Therefore, the findings suggest that BLK1 can be used as a selection marker for B. licheniformis species and subspecies in the microbiome.