• Title/Summary/Keyword: food polymer

Search Result 312, Processing Time 0.029 seconds

Development of Oxo-biodegradable Bio-plastics Film Using Agricultural By-product such as Corn Husk, Soybean Husk, Rice Husk and Wheat Husk (농산부산물인 옥피, 대두피, 왕겨, 소맥피를 이용한 산화생분해 바이오플라스틱 필름 개발)

  • You, Young-Sun;Kim, Mi-Kyung;Park, Myung-Jong;Choi, Sung-Wook
    • Clean Technology
    • /
    • v.20 no.3
    • /
    • pp.205-211
    • /
    • 2014
  • Biomass-based plastics containing the biomass content higher than 25 wt% have been considered as environment-friendly materials due to their effects on the reduction in the $CO_2$ emission and petroleum consumption as well as biodegradability after use. This article described the effect of the additions of oxo-biodegradable additive, 4 kinds of plant biomass, unsaturated fatty acid, citric acid in the properties of polyethylene films. Bio films were prepared using a variety of biomasses and tested for feasibility as a food packaging film. Mechanical properties such as tensile strength and percent elongation at break were evaluated. Husk biomasses from such as corn, soybean, rice, and wheat were pulverized using air classifying mill (ACM) and four different types of packaging films with thickness of $50{\mu}m$ were prepared using the pulverized biomass and low density polyethylene/linear low density polyethylene. The packaging film with wheat husk biomass was found to have greater mechanical properties of elongation and tensile strength than the other samples. Biodegradability of bio film was measured to be 51.5% compared to cellulose.

Effect of Storage Condition of the Refined Palm Oil on its Heat Bleachability (탈산 팜유의 저장조건이 그의 고온 탈색도에 미치는 영향)

  • Rhee, Joon-Shick
    • Korean Journal of Food Science and Technology
    • /
    • v.12 no.3
    • /
    • pp.200-204
    • /
    • 1980
  • A series of tests ware conducted to find out whether continuous heat bleaching of the refined Malaysian plam oil stored in different conditions could reduce color of the finished oil in an actual plant situation. When the refined oil was stored in a stainless steel tank and was not abused by heat during 5 month storage period, heat bleaching followed by clay bleaching and deodorization resulted in a substantial reduction in color of the finished oil in comparison to conventional process (clay bleaching of the refined oil followed by deodorization) (2.6 vs 1.3 red in Lovibond color). However, when the refined oil was stored in a carbon steel tank and was highly abused by heat in the presence of iron picked up from the tank (6.53 ppm) during the same storage period, heat bleaching followed by clay bleaching and deodorization did not help reduce color of the finished oil in comparison to the conventional process (2.7 vs 2.8 red in Lovibond color). It was also shown that oxidation values were not good indices for heat bleachability. Heat bleaching caused slight increase in polymer content of the oil. However, trans isomers were not increased when the oil was heat bleached.

  • PDF

Effects of a Sodium Alginate Coating on Egg Quality during Storage (Sodium Alginate 코팅이 계란의 저장시 품질에 미치는 영향)

  • Hong, Wan-Pyo;Jeong, Yoon-Hwa;Ahn, Yong-Hyun
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.17 no.6
    • /
    • pp.822-826
    • /
    • 2007
  • This study was conducted to determine the effects of a 0.5% sodium alginate eggshell coating, that was applied at two temperatures, 5 and $25^{\circ}C$, by examining the degree of microbial inhibition on the eggshell surface as well as the coating's effects on egg quality during storage. A significant portion of human Salmonella enteritidis infection is traced to food contamination, and eggs are often highly exposed to this type of contamination. The 0.5% sodium alginate coating's effect for inhibiting microbial growth on the eggs, at $25^{\circ}C$ for 7 days, was one hundred thousand times more effective than that of the uncoated eggs. The pH level in eggs increases as the eggs lose $CO_2$ and as the storage temperature increases. We found that the pH of the coated eggs was lower than that of the uncoated eggs. The pH for the uncoated eggs changed from 7.72 to 7.94 over 30 days of storage at $5^{\circ}C$. However, when the eggs were coated with 0.5% sodium alginate, the pH changed from 7.72 to 7.85 over 30 days of storage at $5^{\circ}C$. The Haugh unit was 66.02 for the uncoated eggs and 70.37 for the 0.5% sodium alginate coated eggs after 30 days of storage. The yolk index of the eggs coated with sodium alginate was higher than that of the uncoated eggs after 30 days. These results indicate that a sodium alginate coating on eggs can serve as protection from microbes and is effective in preserving the interior quality of eggs.

  • PDF

Study on Reesterification of Rice Bran Oil Containing High Free Fatty Acids and Glycerol (유리지방산을 많이 함유한 미강유와 글리세린의 에스테르화 반응에 관한 연구)

  • Moon, Sung-Hoon;Rhee, Joon-Shick
    • Korean Journal of Food Science and Technology
    • /
    • v.12 no.3
    • /
    • pp.193-199
    • /
    • 1980
  • A series of tests were conducted on the reesterification of rice bran oil containing high free fatty acids (acid value=119.7) with theoretical equivalent of glycerol. Test results showed that reaction rate (in terms of decrease in acid value) was increased as the reaction temperature was increased regardless of the presence of the catalyst and reaction time (42.7, 21.5 and 10.0 at $170^{\circ}C,\;210^{\circ}C\;and\;250^{\circ}C$, respectively) and as the reaction time was increased regardless of the temperature and the presence of the catalyst (31.1 vs 18.3 for 3 hrs vs 6 hrs). The presence of the catalyst (0.2% tin chloride) also accelerated the rate regardless of the reaction temperature and time (36.9 vs 12.5). Analysis by column chromatography showed that content of triglyceride in the oil was increased to 72.9% and 61.1% from 10.4% and content of free fatty acids in the oil was decreased to 1.4% and 6.1% from 60.2%, when the degummed oil was esterified at $250^{\circ}C$ for 6 hrs in the presence of and in the absence of the catalyst, respectively. The results estimated from the iodine values indicate that polymer formation was not significant, when the oil was esterified for 6 hrs at temperatures up to $210^{\circ}C$. However, it was somewhat significant for the oil esterified at $250^{\circ}C$ for 6 hrs. The catalyst did not affect the polymer formation. Analysis by high performance liquid chromatography showed that oleic acid (42.5%), linoleic acid (29.0%) and palmitic acid (20.3%) were the major fatty acid components of the rice bran oil.

  • PDF

The Antimicrobial Effect of Water Soluble Chitosan (수용성 키토산의 항균효과)

  • Jung, Byung-Ok;Lee, Young-Moo;Kim, Jae-Jin;Choi, Young-Ju;Jung, Kyung-Ja;Kim, Je-Jung;Chung, Suk-Jin
    • Applied Chemistry for Engineering
    • /
    • v.10 no.5
    • /
    • pp.660-665
    • /
    • 1999
  • Structure of water soluble chitosan (WSC) was confirmed by Fourier transform infrared spectrometer (FT-IR), X-ray diffractometer and thermal analyser. The viscosity average molecular weight of WSC ranged from $3.0{\times}10^{4}$ to $4.5{\times}10^{4}$. Using the WSC having viscosity average molecular weight of $3.0{\times}10^{4}$, the antimicrobacterial effects against microorganism and oral microorganism showed 81.7% and 80.6% for Staphyloccus aureus and Bacillus subtilis, respectively, while the anitmicrobacterial effect exhibited 100% and 73.8% against Streptococcus mutans and Streptococcus sanguis, respectively. Therefore it is concluded that WSC is more effective against oral microorganism that microorganism in terms of antimicrobacterial effects. WSC sample with the viscosity average molecular weight of $4.5{\times}10^{4}$ exhibited a half of the antimicrobacterial effect of the low MW sample, indicating that the WSC with low MW was better than that with high MW. Chitin and chitosan showed a drastic decrease of acidity from pH 7.0 to 4.9 after 8 minute incubation time and reached an equilibrium after that. WSC, however, restrained pH of the sample from lowering up to about 16 minutes of incubation and reached an equilibrium after that. WSC obviously showed a buffering effect against pH change.

  • PDF

Immunomodulatory Activities by Difference in Molecular Size of the Proteoglycan Extracted from Ganoderma lucidum IY009 (Ganoderma lucium IY009 유래 단백다당류의 분자량 차이에 따른 면역증강활성)

  • Lee, June-Woo;Baek, Seong-Jin;Bang, Kwang-Woong;Kim, Yong-Seuk;Kim, Kwang-Soo;Chun, Uck-Han
    • The Korean Journal of Mycology
    • /
    • v.29 no.1
    • /
    • pp.15-21
    • /
    • 2001
  • This study was conducted to investigate the immunomodulatory activities of proteoglycan extracted from cultured mycelia of Ganoderma lucidum IY009. The proteoglycan contained two polymer peaks, one was the higher MW peak of 2,000 kD and the other was low peaks of 12kD. To understand the part of strong pharmaceutical activity between two peak, the proteoglycan was separated by ultrafiltration and column chromatography and then examined the various pharmaceutical effects. High molecular weight fraction possesing high content of ${\beta}-linked$ glucan was exhibited high antitumor activity, against sarcoma 180 bearing ICR mouse. And also, anticomplementary activity was highly observed in high molecule fraction than low it fraction. When the raw 264.7 and murine peritoneal macrophage treated with low fraction, high fraction and other stimuli. The activities inducing tumor necrosis factor of the high factions were $2.2{\sim}2.5$ times stronger than that of low fraction.

  • PDF

The Evaluation of the Packaging Properties and Recyclability with Modified Acrylic Emulsion for Flexible Food Paper Coating (유연 종이 식품 포장재의 개질 아크릴 에멀젼 코팅 특성 및 재활용성 평가)

  • Myungho Lee;In Seok Cho;Dong Cheol Lee;Youn Suk Lee
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.29 no.3
    • /
    • pp.153-161
    • /
    • 2023
  • The worldwide effects of COVID-19 have led to a surge in online shopping and contactless services. The consumption pattern has caused the issues such as the environmental pollution together with the increase of plastic waste. Reducing the reliance on the petroleum based plastic use for the package and replacing it with environmentally friendly material are the simple ways in order to solve those problems. Paper is an eco-friendly product with high recyclability as the food packaging materials but has still poor barrier properties. A barrier coating on surface of the paper can be achieved with the proper packaging materials featuring water, gas and grease barrier. Polyethylene (PE) or polypropylene (PP) coatings which are generally laminated or coated to paper are widely used in food packaging applications to protect products from moisture and provide water or grease resistance. However, recycling of packaging containing PE or PP matrix is limited and costly because those films are difficult to degrade in the environment. This study investigated the recyclability of modified acrylic emulsion coating papers compared to PE and PP polymer matrixes as well as their mechanical and gas barrier properties. The results showed that PE or modified acrylic emulsion coated papers had better mechanical properties compared to the uncoated paper as a control. PE or PP coating papers showed strong oil resistance property, achieving a kit rating of 12. Those papers also had a significantly higher percentage of screen reject during the recycling process than modified acrylic coated paper which had a screen rejection rate of 6.25%. In addition an uncoated paper had similar value of a screen rejection rate. It may suggest that modified acrylic emulsion coating paper can be more easily recycled than PE or PP coating papers. The overall results of the study found that modified acrylic emulsion coating paper would be a viable alternative to suggest a possible solution to an environmental problem as well as enhancing the weak mechanical and poor gas barrier properties of the paper against moisture.

Physico-chemical, Nutritional, and Enzymatic Characteristics of Shiitake Spent Mushroom Substrate (SMS) (표고버섯 수확 후 배지의 이화학적, 영양적, 효소적 특성)

  • Sung, Hwa-Jung;Pyo, Su-Jin;Kim, Jong-Sik;Park, Jong-Yi;Sohn, Ho-Yong
    • Journal of Life Science
    • /
    • v.28 no.11
    • /
    • pp.1339-1346
    • /
    • 2018
  • In Korea, edible mushrooms are produced largely on commercial artificial media, so the annual production of spent mushroom substrate (SMS), as a by-product of the mushroom industry, is estimated at over 200 million tons. This SMS is assumed to contain abundant fungal mycelia and pre-fruiting bodies, as well as various nutritive and bioactive compounds that are presently discarded. This study examined the physico-chemical, nutritional, and enzymatic characteristics of uninoculated sterilized medium (USM) and SMS of shiitake mushrooms with the aim of developing a high-value added product from SMS. The contents of crude protein, crude lipid, and ash were higher after the third SMS harvest ($SMS-A-3^{rd}$) than in USM or $SMS-A-1^{st}$. The contents of Ca, Mg, and P in $SMS-A-3^{rd}$ were 2.95, 2.35, and 2.1-fold higher compared than in USM. No As or Cd was detected in USM or SMS. The pH, Brix, and acidity were 4.6, 20.0, and 1.4, respectively in $SMS-A-3^{rd}$, but 5.6, 6.0, and 0.0, respectively, in USM. These results suggest a highly active production of soluble components and organic acids in $SMS-A-3^{rd}$. The distinct color differences noted for USM, $SMS-A-1^{st}$, and $SMS-A-3^{rd}$ could be used as a mycelial growth indicator. Enzyme activity assays using the APIZYM system showed that SMS is a potent source of hydrolysis-related enzymes, especially esterase (C4) and ${\beta}$-glucuronidase. Our results suggested that the SMS of shiitake has a high potential for use in environmental, agricultural, and stock-breeding industries, for example, as active ingredients for sewage treatment, waste-polymer degradation, and feed additives.

Study of Polysulfone Membrane for Membrane-covered Oxygen Probe System (산소 전극 시스템에 사용되는 polysulfone막에 대한 연구)

  • Hong, Suk In;Kim, Hyun Joon;Park, Hee Young;Kim, Tae Jin;Jeong, Yong Seob
    • Applied Chemistry for Engineering
    • /
    • v.7 no.5
    • /
    • pp.877-887
    • /
    • 1996
  • The ideal membranes for membrane-covered oxygen probes system should be selectively permeable for oxygen and chemically inert, and have good mechanical strength. Polysulfone(PSf) was selected to develop the membrane for membrane-covered oxygen electrodes system. PSf membranes have properties such as good reproducibility, good mechanical strength, chemical inertness, and high heat resistance. PSf membranes were cast from polymer solution on the glass plate at constant temperature, and casting solvents used were tetrahydrofuran(THF), methylene chloride, and N-methyl-2-pyrrolidone(NMP). Tricresyl phosphate(TCP) as plasicizer was added to PSf to increase the softness of membrane. The permeation characteristics were observed for pure oxygen and nitrogen through pure PSf membranes by variable volume method and membrane-covered electrode system. The permeability coefficients of oxygen and nitrogen measured by variable volume method were slightly decreased with increasing of upstream pressure. The permeation properties of PSf membrane using methylene choride as casting solvent were not affected by the PSf amount of polymer solution. The permeability coefficients of oxygen and nitrogen for PSf membrane containing TCP were very slightly lower than those for pure PSf membrane, but ideal separation factors were slightly higher. The flexibility of PSf membrane containing 2wt% TCP was better than that of pure PSf membrane. It was expected that this increase in flexibility would solve the difficulty of fixing the membrane to the cathode. The membrane-covered oxygen probes system was composed of anode, cathode and electrolyte. The type of the anode was Ag/AgCl half-cell, that of cathode was Ag, and the electrolyte was 4N KCl solution. The result of sampled current voltametry for PSf membrane showed the plateu region at -0.3V~-1.0V. The correlation coefficient of oxygen partial pressure versus current for PSf membrane was relatively high, 0.99949. It was concluded that PSf membrane was the good candidate for the membrane-covered oxygen probes system.

  • PDF

Prebiotic Properties of Levan in Rats

  • Jang, Ki-Hyo;Kang, Soon-Ah;Cho, Yun-Hi;Kim, Yun-Young;Lee, Yun-Jung;Hong, Kyung-Hee;Seong, Kyung-Hwa;Kim, So-Hye;Kim, Chul-Ho;Rhee, Sang-Ki;Ha, Sang-Do;Choue, Ryo-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.3
    • /
    • pp.348-353
    • /
    • 2003
  • Generally, two different types of fructose polymer are found in nature. One is inulin, whose fructosyl residues are linked mainly by a ${\beta}-(2,1)-linkage$, while the other is high-molecular-weight levan, whose fructosyl residues are linked mainly by a ${\beta}-(2,6)-linkage$. In contrast to the extensive studies on the prebiotic properties of inulin, there has been no report on the effect of levan on the large bowel microflora in viva. Therefore, to examine whether dietary levan can be used as a prebiotic, Sprague-Dawley male rats were fed one of two diets for 3 weeks: 1) basal diet plus sucrose; 2) basal diet plus 10% (wt/wt) levan. The cecal bowel mass, cecal and colon short-chain fatty acids (SCFAs), pH, and microflora were then compared. The intake of the levan-containing diet significantly increased the total cecal weight and wall weight. The analyses of the SCFAs in the cecal and colonic contents revealed that levan was converted into acetate, butyrate, and lactate, which resulted in acidic conditions. The intake of levan also significantly increased the total number of microorganisms by 5-fold and lactic acid-producing bacteria (LAB) 30-fold in the feces. Accordingly, the current work shows that levan can be used as a prebiotic for stimulating the growth of LAB in an animal model.