• Title/Summary/Keyword: follicular unit (FU)

Search Result 2, Processing Time 0.02 seconds

Follicular Unit Classification Method Using Angle Variation of Boundary Vector for Automatic Hair Implant System

  • Kim, Hwi Gang;Bae, Tae Wuk;Kim, Kyu Hyung;Lee, Hyung Soo;Lee, Soo In
    • ETRI Journal
    • /
    • v.38 no.1
    • /
    • pp.195-205
    • /
    • 2016
  • This paper presents a novel follicular unit (FU) classification method based on an angle variation of a boundary vector according to the number of hairs in several FU images. The recently developed robotic FU harvest system, ARTAS, classifies through digital imaging the FU type based on the number of hairs with defects in the contour and outline profile of the FU of interest. However, this method has a drawback in that the FU classification is inaccurate because it causes unintended defects in the outline profile of the FU. To overcome this drawback, the proposed method classifies the FU's type by the number of variation points that are calculated using an angle variation a boundary vector. The experimental results show that the proposed method is robust and accurate for various FU shapes, compared to the contour-outline profile FU classification method of the ARTAS system.

The Treatment of Linear and Narrow Scar after Craniotomy Using the Follicular Unit Excision

  • Hiromi Okochi;Masamitsu Onda;Akira Momosawa;Masayuki Okochi
    • Archives of Plastic Surgery
    • /
    • v.49 no.6
    • /
    • pp.704-709
    • /
    • 2022
  • Background The scar alopecia after cranioplasty (SAC) may decrease the patient's quality of life. We have treated SAC using follicular unit extraction (FUE). The aim of this study was to discuss that efficacy of FUE and how much hair follicular unit (FU) should be transplanted intraoperatively for the treatment of SAC. Methods We treated 10 patients (4 men and 6 women) who had SAC using FUE. Results The average age, alopecia size, and intraoperative hair density on the graft area were 29.8 ± 12.1 years, 29.8 ± 44.5 cm2, and 34.6 ± 11.8 FU/cm2, respectively. One year postoperatively, the average hair survival rate on the graft area was 66.3 ± 6.1%. Hair appearance was rated as good in six, fair in three, and poor in one. Among patients whose 1-year postoperative hair density was ≥ 20 FU/cm2, five of six patients achieved good results. However, among patients whose 1-year postoperative hair density was < 20 FU/cm2, all four patients achieved fair or poor results. The postoperative hair density was significantly higher in patients whose 1-year postoperative hair density was ≥ 20 FU/cm2 than in patients whose 1-year postoperative hair density was< 20 FU/cm2. The rate of achieving fair or poor results was significantly higher if the postoperative hair density was < 20 FU/cm2 than if it was ≥ 20 FU/cm2 (p = 0.047). Conclusions FU excision is useful for the treatment of scar alopecia after craniotomy. Our results suggest that the 1-year postoperative hair density should exceed 20 FU/cm2 to achieve good outcomes.