• Title/Summary/Keyword: follicular development

Search Result 385, Processing Time 0.025 seconds

Effect of Addition of ESCM and ESM during In Vitro Maturation on In Vitro Development of Porcine Follicular Oocytes (돼지 난포란으로부터 배반포의 체외생산에 있어서 체외성숙시 기초배양액에 ESCM과 ESM의 첨가효과)

  • Kim, Seok-Gi;Park, Hum-Dai
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.34 no.3
    • /
    • pp.205-211
    • /
    • 2019
  • In this study, we investigated the possibility of using mouse embryonic stem cell conditioned medium (ESCM) and embryonic stem cell medium (ESM) for in vitro maturation in the efficient in vitro production of blastocysts from porcine follicular oocyte. Depending on the concentration of supplement of ESCM added to the NCSU-23 solution did not affect 2-cell development rates and blastocysts development. However, in particular, the survival rate (10 days of culture) of blastocyst was significantly higher than that of the control group as the additive concentration (30%) increased (p < 0.05). The survival rate of blastocysts showed a similar tendency even with addition of ESM (30%) alone. On the other hand, the duration of the addition of these additives during IVM (0-44 h) was that the IVM I period (0-22 h) were more effective than the IVM II period (22-44 h). Thus, the effect of these additives is probably due to the combination of the various physiologically active substances of ESCM or the appropriate amino acids and vitamins of ESM. In particular, these additives were more effective during the first half (IVM I) of in vitro maturation. In summary, optimization of ESCM or ESM supplementation may improve in vitro maturation of porcine oocyte and affect developmental competency. Therefore, if more efficient methods of adding ESCM or ESM to basal culture medium can be developed during in vitro maturation of porcine follicle oocytes, high quality blastocysts will be developed from low porcine follicular oocyte compared to other domestic animals.

Effects of Bovine Cumulus Cell Co-Culture and CR1aa Medium on In Vitro Development of In Vitro Produced Bovine Embryos (우 난구세포의 공동배양과 CR1aa배양액이 체외생산된 우 수정란의 체외 발생에 미치는 영향)

  • 김동훈;정형민;박세필;이훈택;정길생
    • Korean Journal of Animal Reproduction
    • /
    • v.17 no.4
    • /
    • pp.271-278
    • /
    • 1994
  • The aim of this study was to compare the two culture systems 1) co-culture with cumulus cells and 2) chemically defined medium supplemented with amino acids (CR1aa) and fetal calf serum (FCS) of in vitro produced bovine embryos from follicular oocytes in vitro. Bovine follicular oocytes were collected from ovaries of slaughtered cows and matured in TCM199 supplemented with 10% FCS and hormones (1$\mu\textrm{g}$/ml FSH-P and 1$\mu\textrm{g}$/ml oestradiol-17$\beta$)24 hours at 39$^{\circ}C$ under 5% CO2 in air. The capacitation of spermatozoa from ejaculated or frozen bull semen was induced by centrifugation through Percoll density gradient (45%, 90%). Then capacitated spermatozoa (1$\times$106/ml) were inseminated into 50${mu}ell$ droplet containing matured follicular oocytes and incubated for 40~42 hours. Cleaved embryos of 2~4cell stage were transferred to the co-culture with cumulus cells and/or CR1aa medium supplemented with FCS. In semen source, the developmental rates to the blastocyst and the hatched blastocyst stages were higher in ejaculated semen(27.6% and 14.9%) than those of frozen-thawed semen(18.3% and 11.8%), respectively. In two culture systems, the proportions of embryonic development upto the blastocysts and the hatched blastocysts were higher of CR1aa medium (22.1% and 12.1%) than those of cumulus cell co-culture (16.8% and 5.1%), respectively. The number of cells in exapnded blastocysts was slightly higher in cumulus cells co-culture (122.6$\pm$8.5) than that in CR1aa medium (117.9$\pm$5.9). The present results indicated that the early development of in vitro produced bovine embryos can be maintained efficiently in CR1aa medium as well as in co-culture with cumulus cells.

  • PDF

Relationship between follicular fluid adipocytokines and the quality of the oocyte and corresponding embryo development from a single dominant follicle in in vitro fertilization/intracytoplasmic sperm injection cycles

  • Chang, Hye Jin;Lee, Ji Hyun;Lee, Jung Ryeol;Jee, Byung Chul;Suh, Chang Suk;Kim, Seok Hyun
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.41 no.1
    • /
    • pp.21-28
    • /
    • 2014
  • Objective: To investigate the association of individual follicular fluid (FF) leptin and adiponectin levels with the quality of the corresponding oocyte and embryo. Methods: We prospectively enrolled 67 women who underwent controlled ovarian hyperstimulation with 89 FF samples. FF and the corresponding oocyte was obtained from a single dominant preovulatory follicle at the time of oocyte retrieval. Concentrations of leptin and adiponectin were measured by enzyme-linked immunosorbent assay in an individual follicle. The oocyte quality, fertilization rate, and corresponding embryo development were assessed. Results: The FF level of leptin was significantly associated with body mass index (r=0.334, p<0.01). The FF adiponectin level was significantly higher in the normal fertilization group than the abnormal fertilization group (p=0.009) in the non-obese women. A lower FF leptin level was associated with a trend toward mature oocytes, normal fertilization, and good embryo quality, although these relationships were not statistically significant. The leptin:adiponectin ratio of FF did not differ significantly according to oocyte and embryo quality. The quality of the oocyte and embryo was not associated with the FF leptin level tertile. However, the normal fertilization rate was positively associated with FF adiponectin level tertile. There was a trend towards improved oocytes and normal fertilization rates with the lowest tertile of the FF leptin:adiponectin ratio, but this difference was not statistically significant. Conclusion: Our results suggest that a high FF adiponectin concentration could be a predictor of normal fertilization. However, the FF leptin concentration and leptin:adiponectin ratio is not significantly related to oocyte maturity and corresponding embryo development.

The association of follicular fluid volume with human oolemma stretchability during intracytoplasmic sperm injection

  • Inoue, Taketo;Yamashita, Yoshiki;Tsujimoto, Yoshiko;Yamamoto, Shuji;Taguchi, Sayumi;Hirao, Kayoko;Uemura, Mikiko;Ikawa, Kayoe;Miyazaki, Kazunori
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.44 no.3
    • /
    • pp.126-131
    • /
    • 2017
  • Objective: Oocyte degeneration often occurs after intracytoplasmic sperm injection (ICSI), and the risk factor is low-quality oocytes. The follicular fluid (FF) provides a crucial microenvironment for oocyte development. We investigated the relationships between the FF volume aspirated from individual follicles and oocyte retrieval, oocyte maturity, oolemma stretchability, fertilization, and development. Methods: This retrospective study included data obtained from 229 ICSI cycles. Ovarian stimulation was performed according to a gonadotropin-releasing hormone antagonist protocol. Each follicle was individually aspirated and divided into six groups according to FF volume ( < 1.0, 1.0 to < 2.0, 2.0 to < 3.0, 3.0 to < 4.0, 4.0 to < 5.0, and ${\geq}5.0mL$). Oolemma stretchability during ICSI was evaluated using a mechanical stimulus for oolemma penetration, that is, the stretchability was assessed by oolemma penetration with aspiration (high stretchability) or without aspiration (low stretchability). Results: Oocyte retrieval rates were significantly lower in the < 1.0 mL group than in the ${\geq}1.0mL$ groups (46.0% [86/187] vs. 67.5%-74.3% [172/255 to 124/167], respectively; p< 0.01). Low oolemma stretchability was significantly more common in the < 1.0 mL group than in the ${\geq}1.0mL$ groups during ICSI (22.0% [13/59] vs. 5.8%-9.4% [6/104 to 13/139], respectively; p= 0.018). There was a relationship between FF volume and oolemma stretchability. However, there were no significant differences in the rates of fertilization, cleavage, ${\geq}7$ cells at day 3, and blastocyst development among all groups. Conclusion: FF volume is potentially associated with the stretchability of metaphase II oolemma during ICSI. Regarding oolemma stretchability, ensuring a uniform follicular size during ovarian stimulation is crucial to obtain good-quality oocytes.

Effects of Repeated Ovarian Stimulation on Ovarian Function and Aging in Mice

  • Whang, Jihye;Ahn, Cheyoung;Kim, Soohyun;Seok, Eunji;Yang, Yunjeong;Han, Goeun;Jo, Haeun;Yang, Hyunwon
    • Development and Reproduction
    • /
    • v.25 no.4
    • /
    • pp.213-223
    • /
    • 2021
  • Controlled ovarian hyperstimulation (COH) is routinely used in the in vitro fertilization and embryo transfer (IVF-ET) cycles to increase the number of retrieved mature oocytes. However, the relationship between repeated COH and ovarian function is still controversial. Therefore, we investigated whether repeated ovarian stimulation affects ovarian aging and function, including follicular development, autophagy, and apoptosis in follicles. Ovarian hyperstimulation in mice was induced by intraperitoneal injection with pregnant mare serum gonadotropin (PMSG) and human chorionic gonadotropin (hCG). Mice subjected to ovarian stimulation once were used as a control group and 10 times as an experimental group. Repeated injections with PMSG and hCG significantly reduced the number of primary follicles compared to a single injection. The number of secondary and antral follicles increased slightly, while the number of corpus luteum increased significantly with repeated injections. On the other hand, repeated injections did not affect apoptosis in follicles associated with follicular atresia. The expression of autophagy-related genes Atg5, Atg12, LC3B, and Beclin1, cell proliferation-related genes mTOR, apoptosis-related genes Fas, and FasL was not significantly different between the two groups. In addition, the expression of the aging-related genes Dnmt1, Dnmt3a, and AMH were also not significantly different. In this study, we demonstrated that repeated ovarian stimulation in mice affects follicular development, but not autophagy, apoptosis, aging in ovary. These results suggest that repetition of COH in the IVF-ET cycle may not result in ovarian aging, such as a decrease in ovarian reserve in adult women.

The effects of light colour on female rabbit reproductive performance and the expression of key genes in follicular development

  • Xiaoqing, Pan;Xinglong, Wang;Le, Shao;Jie, Yang;Feng, Qin;Jian, Li;Xia, Zhang;Pin, Zhai
    • Journal of Animal Science and Technology
    • /
    • v.64 no.3
    • /
    • pp.432-442
    • /
    • 2022
  • The purpose of this study was to analyse the effects of light colour on rabbit reproductive performance and the expression of key follicular development genes. Rabbits (n = 1,068, 5 months old, 3.6-4.4 kg live body weight) were divided randomly into four groups, housed individually in wire mesh cages and exposed to red, green, blue, and white light-emitting diode (LED) light (control). The lighting schedule was 16 L : 8 D-15 d / 150 lx / 6:00 am-22:00 pm (3 d preartificial insemination to 12 d postartificial insemination). Red light and white light affected the conception rate and kindling rate and increased the total litter size at birth (p < 0.05). The effects of red light on litter size at weaning, litter weight at weaning, and individual weight at weaning increased compared with the green and blue groups. The effects of red light on live litter size at birth were increased compared with those in the blue group (p < 0.05). Compared to white light, green and blue light reduced the number of secondary follicles (p < 0.05). Compared to red light, green and blue light reduced the number of tertiary follicles (p < 0.05). Compared with white light, red LED light resulted in greater ovarian follicle stimulating hormone receptor and luteinizing hormone receptor mRNA expression (p < 0.05). Compared with green and blue LED light, red LED light resulted in greater B-cell lymphom-2 mRNA expression (p < 0.05). Compared with green LED light, red LED light inhibited FOXO1 mRNA expression in rabbit ovaries (p < 0.05). Red light can affect the reproductive performance of female rabbits and the expression of key genes for follicular development.

The Suppression of Maturational Competence by Streptomycin during In vitro Maturation of Goat Follicular Oocytes

  • Kang, Jae Ku;Chang, Suk Min;Naruse, Kenji;Han, Jeung Whan;Park, Chang Sik;Jin, Dong Il
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.8
    • /
    • pp.1076-1079
    • /
    • 2004
  • Antibiotics are common additives in culture media during in vitro embryo development, but their effects on oocyte maturation in vitro have not been tested. The effects of penicillin, streptomycin and gentamicin on the maturational competence and subsequent development potential of goat follicular oocytes were examined after parthenogenetic activation in vitro. Maturation rates at 24 h after in vitro maturation, and parthenogenetic development at 48 h after activation, were evaluated by observing the protruding first polar body and the 4 cell stage cleavage, respectively. When streptomycin was present in the maturation medium, the percentages of matured oocytes 24 h after activation were significantly (p<0.01) lower than those from the other groups (42.5-45.7% vs. 69.1-73.8%). Penicillin and gentamicin treatment did not affect the maturation rates or the percentages reaching the 4 cell stage 48 h after activation. There was no significant difference in cleavage rates among the different antibiotic treatments 48 h after activation. Therefore, streptomycin suppresses the in vitro maturation of immature goat oocytes, but does not influence their subsequent development.

Effect of Bovine Follicular Fluid and Hormones on In Vitro Oocyte Fertilization and Development of Bovine Embryos (소의 난포액과 호르몬이 난포란의 체외수정 및 체외발달에 미치는 영향)

  • 최양석;송상현;최창용;하란조;강다원;최상용;윤창현;박충생
    • Journal of Embryo Transfer
    • /
    • v.12 no.2
    • /
    • pp.181-188
    • /
    • 1997
  • This study was carried out to determine the effect of bovine follicular fluid(bFF), hormones, and fetal bovine serum(FBS) supplemented in the medium on the in vitro fertilization and development of bovine embryos. The ovaries were obtained from a local abattoir and placed in physiological saline kept at 30~32˚C and brought to the laboratory within 3~4 hours. The oocytes and follicular fluid were collected by aspiration from visible follicles, and the oocytes of grades I on the basis of the morphology of cumulus cells attached and the homogeneity of cytoplasmic granules were selected and used for maturation. The basal media used for oocyte maturation, fertilization and embryo development in vitro were Ham' F-10, TALP and TCM-199, respectively. The hormones supplemented in maturation medium were consisted of 35 pg /ml FSH, 10 pg /ml LH and 1 pg/mi estradiol-l7$\beta$. The bFF collected from 5~9 mm follicles was centrifuged, filtered and inactivated by heat-treatment at 56˚C for 30 min. FBS also was inactivated with the same method and kept at -20˚C until use. The embryos were co-cultured with the monolayer of bovine oviductal epithelial cells at 39˚C under 5% $CO_2$ in air for 9 days. The results obtained were summarized as follows: The fertilization rate of oocytes was found 87.4% from 10% FBS and hormones treatment for IVM, and 37.1% of these TVF embryos were developed to blastocyst stage in 10% FBS groups. Compared with this control system, the fertilization rate was decreased significantly(P<0.05) in the maturation without either FBS or hormones. These IVF embryos were developed to morula stage at the similar rate, but to blastocyst at significantly(P<0.05) lower rate in the embryo culture with or without FBS supplementation. The fertilization rate(82.9%) in hormones and 10% inactivated bFF was similar with 10% FBS and hormone groups(87.4%), but decreased significantly(P<0.05) in 20 or 30% bFF (61.0 or 66.0%), respectively. In vitro developmental competence to blastocyst stage in 10% FBS and 20% inactivated bFF(37.1% and 31.4%) was higher than in 10 or 30% inactivated bFF(20.0 or 19.2%) or 10, 20 and 30% fresh bFF(19.1, 21.0 and 17.5%) The results indicated that the in vitro fertillzation and development rate of the embryos should be improved in 10% FBS or 20% inactivated culture system and 20% inactivated bFF might be available economically for bovine oocyte maturation and embryo culture instead of fetal bovine serum.

  • PDF

Expression of SDF-$1{\alpha}$ and leptin, and their effect on expression of angiogenic factors in mouse ovaries

  • Park, Min-Jung;Park, Sea-Hee;Lee, Su-Kyung;Moon, Sung-Eun;Moon, Hwa-Sook;Joo, Bo-Sun
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.38 no.3
    • /
    • pp.135-141
    • /
    • 2011
  • Objective: Ovarian angiogenesis plays an important role in folliculogenesis. However, little is known about the expression of angiogenic factors during follicular development according to female age. Stromal cell derived factor-$1{\alpha}$ (SDF-$1{\alpha}$) plays a role in granulosa cell survival and embryo quality as an angiogenic chemokine. Leptin is also involved in folliculogenesis and angiogenesis. This study examined expression of SDF-$1{\alpha}$ and leptin, and their effects on the expression of angiogenic factors in the ovary during follicular development according to female age. Methods: Ovaries were collected from C57BL mice of two age groups (6-9 weeks and 24-26 weeks) at 6, 12, 24, and 48 hours after 5 IU pregnant mare's serum gonadotropin (PMSG) injection. The expression of ovarian SDF-$1{\alpha}$ and leptin mRNA was evaluated by RT-PCR. In the organ culture experiment, the ovaries were cultured in transwell permeable supports with Waymouth's medium treated with various doses of SDF-$1{\alpha}$(50-200 ng/mL) or leptin (0.01-1 ${\mu}g$/mL) for 7 days. Then, mRNA expression of vascular endothelial growth factor (VEGF), endothelial nitric oxide synthase (eNOS), and visfatin were examined in the cultured ovaries. Results: Expression of SDF-$1{\alpha}$ and leptin in the ovary was significantly lower in the aged mouse group compared to the young mouse group ($p$ <0.05). Expression of these two factors increased with follicular development after PMSG administration. SDF-$1{\alpha}$ treatment stimulated visfatin expression in a dose-dependent manner, while leptin treatment significantly increased eNOS expression. Conclusion: These results suggest that decrease of ovarian SDF-$1{\alpha}$ and leptin expression may be associated with aging-related reduction of ovarian function. SDF-$1{\alpha}$ and leptin may play a role in follicular development by regulating the expression of angiogenic factors in mouse ovaries.