• Title/Summary/Keyword: focused laser beam

Search Result 136, Processing Time 0.024 seconds

Laser Copper Patterning by wettability improvement of Silicon (레이저에 의한 실리콘 표면의 습윤성 향상과 구리 패터닝)

  • Kim, Dong-Yung;Lee, Kyoung-Cheol;Lee, Cheon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.1080-1083
    • /
    • 2002
  • In this paper, we have studied with regard to the use of lasers for modifying the surface properties of silicon in order to improve it's wettability and adhesion characteristics. Using an Nd:YAG pulse laser, the wettability and adhesion characteristics of silicon surface have been developed by an Nd:YAG pulse laser. It was found that the laser treatment of silicon surfaces modified the surface energy. In the result of wetting experiments, by the sessile drop technique using the distilled water, wetting characteristic of silicon after the laser irradiation shows a decreased value of the contact angle. In case of the laser treated silicon surface, laser direct writing of copper lines has been achieved by pyrolytic decomposition of copper formate films$(Cu(HCOO)_2{\cdot}4H_2Q)$, using a focused $Ar^+$ laser beam$(\lambda=514.5nm)$ on the silicon substrates. The deposited patterns were measured by energy dispersive X-ray(EDX), Scanning Electron Microscopy(SEM) and surface profiler($\alpha$-step) to examine the cross section of deposited copper lines and linewidth.

  • PDF

Microstructure and electrical properties of high power laser thermal annealing on inkjet printed Ag films

  • Yoon, Yo-Han;Yi, Seol-Min;Yim, Jung-Ryoul;Lee, Ji-Hoon;Joo, Young-Chang
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.36.2-36.2
    • /
    • 2009
  • In this work, the high power CW Nd:YAG laser has been used for thermal treatment of inkjet printed Ag films-involving eliminating organic additives (dispersant, binder, and organic solvent) of Ag ink and annealing Ag nanoparticles. By optimizing laser parameters, such as laser power and defocusing value, the laser energy can totally be converted to heat energy, which is used to thermal treatment of inkjet printed Ag films. This results in controlling the microstructures and the resistivity of films. We investigated the thermal diffusion mechanisms during laser annealing and the resulting microstructures. The impact of high power laser annealing on microstructures and electrical characteristic of inkjet printed Ag films is compared to those of the films annealed by a conventional furnace annealing. Focused ion beam (FIB) channeling image shows that the laser annealed Ag films have large columnar grains and dense structure (void free), while furnace annealed films have tiny grains and exhibit void formation. Due to these microstructural characteristics of laser annealed films, it has better electrical property (low resistivity) compared to furnace annealed samples.

  • PDF

Laser Sintering of Inkjet-Printed Silver Lines on Glass and PET Substrates (유리와 PET 기판에 잉크젯 인쇄된 실버 도선의 레이저 소결)

  • Kim, Myong-Ki;Kang, Heui-Seok;Kang, Kyung-Tae;Lee, Sang-Ho;Hwang, Jun-Young;Moon, Seung-Jae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.11
    • /
    • pp.975-982
    • /
    • 2010
  • In this study, the laser sintering of inkjet-printed silver lines was evaluated. Silver-nanoparticle ink and a drop-ondemand (DOD) inkjet printer were used for printing on glass and polyethylene terephthalate (PET) substrates with various thicknesses. To sinter the printed silver nanoparticles, the silver layer printed on the transparent substrates was irradiated by focused CW laser beams that were incident normal to the substrates; the irradiation was carried out for various beam intensities and for various irradiation times. The electrical conductivity of the laser-sintered silver patterns was measured and compared with the conductivity of silver patterns sintered by using an oven. The increase in the temperature caused by laser irradiation was also calculated on the basis of the laser beam intensity, irradiation time, surface reflectivity, and thermophysical property of the substrate in order to estimate the increase in the electrical conductivity caused by laser sintering.

Contact Microscopy by Using Soft X-ray Radiation from Iodine Laser Produced Plasma (옥소 레이저 플라즈마에서 발생된 연 X-선을 이용한 밀착 현미경 기술)

  • 최병일
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1990.02a
    • /
    • pp.49-53
    • /
    • 1990
  • Laser plasma was generated by a 1 GW iodine photodissociation laser(λ=1.315${\mu}{\textrm}{m}$, E-12.7J) whose output beam was focused on a molybdenum target surface. The experiment was conducted in the vacuum chamber under 10-5Torr and several tens of laser shooting were necessary for sufficient exposure to the PBS resist. A speciman was put directly on the resist and located at a distance of 3cm from the X-ray source. The replicas of a mesh, spider's tread, a red blood cell were obtained by PBS resist and were analyzed by Nomarski and SEM. Two main effects of limitation in resolution, source size and Fresnel diffraction, are mentioned and compared with the experimental result. In this experiment, a resolution better than 1000A could be obtained.

  • PDF

Laser Direct Patterning of Carbon Nanotube Film

  • Yun, Ji-Uk;Jo, Seong-Hak;Jang, Won-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.203-203
    • /
    • 2012
  • The SWCNTs network are formed on various plastic substrates such as poly(ethylene terephthalate) (PET), polyimide (PI) and soda lime glass using roll-to-roll printing and spray process. Selective patterning of carbon nanotubes film on transparent substrates was performed using a femtosecond laser. This process has many advantages because it is performed without chemicals and is easily applied to large-area patterning. It could also control the transparency and conductivity of CNT film by selective removal of CNTs. Furthermore, selective cutting of carbon nanotube using a femtosecond laser does not cause any phase change in the CNTs, as usually shown in focused ion beam irradiation of the CNTs. The patterned SWCNT films on transparent substrate can be used electrode layer for touch panels of flexible or flat panel display instead indium tin oxide (ITO) film.

  • PDF

Calculations of the Trapping Force of Optical Tweezers using FDTD Method (FDTD 방법을 이용한 광집게의 포획 힘 계산)

  • Sung, Seung-Yong;Lee, Yong-Gu
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.1
    • /
    • pp.80-83
    • /
    • 2008
  • Optical tweezers are a tool that can use a tightly focused laser beam to trap and manipulate micron-sized dielectric particles that are immersed in a medium with lower refractive index. In this paper, the calculation of the trapping force of optical tweezers is presented. A nonparaxial Gaussian beam is used to represent a tightly focused Gaussian beam, and the FDTD (Finite-Difference Time-Domain) method is used for computing the electromagnetic field distributions in the dielectric medium. Scattered-field formulation is used for analytical expression of the incident fields. Using the electromagnetic field distribution from FDTD simulation, the trapping force is calculated based on Maxwell's stress tensor.

Super multi-view 3-D display system based on focused light Array using reflective vibrating scanner array (ViSA)

  • Ho-In Jeon;Nak-Hee Jung;Jin-San Choi;Young Jung;Young Huh
    • Broadcasting and Media Magazine
    • /
    • v.6 no.2
    • /
    • pp.84-101
    • /
    • 2001
  • In this paper, we present a primitive system design of a super multi-view(SMV) 3-D display system based on a focused light array(FLA) concept using reflective vibrating scanner array(ViSA). The parallel beam scanning using a vibrating scanner array is performed by moving left and right an array of curvature-compensated mirrors or diamond-ruled reflective grating attached to a vibrating membrane. The parallel laser beam scanner array can replace the polygon mirror scanner which has been used in the SMV 3-D display system based on the focused light array(FLA) concept proposed by Kajiki at TAO(Telecommunications) Advancement Organization). The proposed system has great advantages in the sense that it requires neither huge imaging optics nor mechanical scanning pals. Some mathematical analyses and fundamental limitations of the proposed system are presented. The proposed vibrating scanner array, after some modifications and refinements, may replace polygon mirror-based scanners in the near future.

  • PDF

Electron beam weldability of titanium alloy (타이타늄합금의 전자빔용접성)

  • Lee, Chae-Hun;Yun, Jong-Won;Park, No-Gwang
    • Laser Solutions
    • /
    • v.10 no.4
    • /
    • pp.13-17
    • /
    • 2007
  • Electron beam weldability was investigated for 1mm thick cold rolled sheets of commercially pure grade titanium and Ti-6Al-4V alloy. Accelerating voltage of 40kV, beam current of 6mA, and weld speed of 0.8m/min was used and focal position of focused electron beam was just on the surface of workpiece. Microstructure of weld metal, the heat affected zone and base metal was observed using optical microscope. Vickers hardness was measured across the welds and the transverse tensile test was carried out. Hydroformability test was also carried out for the butt welded coupons of commercially pure grade titanium. For the electron beam welded C P Ti, the average grain size was equiaxed $\alpha(15{\sim}25{\mu}m)$ for base metal, coarse equiaxed $\alpha(80{\sim}200{\mu}m)$ for weld metal and annealed and enlarged grain($40{\sim}120{\mu}m$) for the HAZ. The vickers hardness of C P Ti was $180{\sim}200Hv$ for base metal, and $160{\sim}180Hv$ for the weld metal and the HAZ. For the electron beam welded Ti-6Al-4V alloy, the vickers hardness was 360Hv for the base metal, abd $400{\sim}425Hv$ for the weld metal and the HAZ. All the failure occurred at the base metal, when the transverse weld tensile test was carried out for both electron beam welded C P Ti and Ti-6Al-4V alloy. The formability of electron beam welded C P Ti was decreased compared with that of C P Ti base alloy.

  • PDF

An investigation on dicing 28-nm node Cu/low-k wafer with a Picosecond Pulse Laser

  • Hsu, Hsiang-Chen;Chu, Li-Ming;Liu, Baojun;Fu, Chih-Chiang
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.4
    • /
    • pp.63-68
    • /
    • 2014
  • For a nanoscale Cu/low-k wafer, inter-layer dielectric (ILD) and metal layers peelings, cracks, chipping, and delamination are the most common dicing defects by traditional diamond blade saw process. Sidewall void in sawing street is one of the key factors to bring about cracks and chipping. The aim of this research is to evaluate laser grooving & mechanical sawing parameters to eliminate sidewall void and avoid top-side chipping as well as peeling. An ultra-fast pico-second (ps) laser is applied to groove/singulate the 28-nanometer node wafer with Cu/low-k dielectric. A series of comprehensive parametric study on the recipes of input laser power, repetition rate, grooving speed, defocus amount and street index has been conducted to improve the quality of dicing process. The effects of the laser kerf geometry, grooving edge quality and defects are evaluated by using scanning electron microscopy (SEM) and focused ion beam (FIB). Experimental results have shown that the laser grooving technique is capable to improve the quality and yield issues on Cu/low-k wafer dicing process.

High Power Laser Driven Shock Compression of Metals and Its Innovative Applications (고 출력 레이저에 의한 충격파 현상 연구 및 응용)

  • Lee, Hyun-Hee;Gwak, Min-Cheol;Choi, Ji-Hee;Yoh, Jai-Ick
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.11
    • /
    • pp.832-840
    • /
    • 2008
  • Ablation occurs at irradiance beyond $10^9\;W/cm^2$ with nanosecond and short laser pulses focused onto any materials. Phenomenologically, the surface temperature is instantaneously heated past its vaporization temperature. Before the surface layer is able to vaporize, underlying material will reach its vaporization temperature. Temperature and pressure of the underlying material are raised beyond their critical values, causing the surface to explode. The pressure over the irradiated surface from the recoil of vaporized material can be as high as $10^5\;MPa$. The interaction of high power nanosecond laser with a thin metal in air has been investigated. The nanosecond pulse laser beam in atmosphere generates intensive explosions of the materials. The explosive ejection of materials make the surrounding gas compressed, which form a shock wave that travels at several thousand meters per second. To understand the laser ablation mechanism including the heating and ionization of the metal after lasing, the temporal evolution of shock waves is captured on an ICCD camera through laser flash shadowgraphy. The expansion of shock wave in atmosphere was found to agree with the Sedov's self-similar spherical blast wave solution.