• Title/Summary/Keyword: focal length

Search Result 374, Processing Time 0.022 seconds

Location Studies of Prostate Volume Measurement by using Transrectal Ultrasonography: Experimental Study by Self-Produced Prostate Phantom (경직장초음파를 이용한 전립선 볼륨측정 시의 위치 연구: 전립선모형 제작과 실험)

  • Kim, Yun-Min;Yoon, Joon;Byeon, II-kyun;Lee, Hoo-Min;Kim, Hyeong- Gyun
    • Journal of radiological science and technology
    • /
    • v.38 no.4
    • /
    • pp.437-442
    • /
    • 2015
  • Accurate volume measurement of the prostate is a significant role in determining the result of diagnosis and treatment of benign prostate hyperplasia. The purpose of this study was to determine, when measuring prostate volume by TRUS, whether location is more accurately determined by transaxial or longitudinal scanning. With reference to the patient's image, it was produced six prostate model. It compares the actual volume and the measurement volume, and find the optimal measurement position of each specific model. Prostate volume measured by TRUS closely correlates with prostate phantom volume. There was no significant difference(p = .156). To measure the accurate volume of prostate with focal protrusion, its length should be measured exclude the protrusions.

Analysis of the Angular Selectivity due to the Focused Readout Beamin Photorefractive Grating (광굴절 격자에서 집속 판독빔에 의한 각도 선택 특성 분석)

  • An, Jun-Won;Kim, Nam;Lee, Kwon-Yeon;Lee, Hyun-Jae;Seo, Wan-Seok
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.9
    • /
    • pp.31-37
    • /
    • 2000
  • An angular selectivity through the focused readout beam is geometrically analyzed and experimental results are presented. Based on the analysis of geometrical results, we derive a new relation that the angular selectivity depends on incident conditions of the readout beam and independent on the writing conditions. In order to demonstrate our theory, we investigate angular selectivity as functions of following factors: writing beam incident angle, readout beam width and lens focal length. From the experimental results, it is shown that the angular selectivities are 2.632$^{\circ}$, 2.618$^{\circ}$, 2.604$^{\circ}$ when the external half-crossing angles of writing beam are 8$^{\circ}$, 10$^{\circ}$, 14$^{\circ}$, respectively. Applying the same incident angle of the recording beam, angular selectivity is changed by the control of readout beam width and then their properties are 2.632$^{\circ}$, 0.588$^{\circ}$. From these results, we have known that the angular selectivity is very critical to incident conditions of readout beam.

  • PDF

Thermal Performance of Air Receiver filled with Porous Material for $5kW_t$ Dish Solar Collector (공기식 흡수기를 이용한 5kW급 접시형 태양열 집열기의 열성능 해석)

  • Seo, Joo-Hyun;Ma, Dae-Sung;Kim, Yong;Seo, Tae-Beom;Kang, Yong-Heack;Lee, Sang-Nam;Han, Gui-Young
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.570-575
    • /
    • 2007
  • The thermal performance of the air receiver filled with porous material for 5kWt dish solar collector installed in Inha University, Korea, is experimentally investigated. The diameter of the parabolic dish is 3.2 m, and its focal length is 2 m. It consists of 10 small pieces of glasses which have their own curvatures, and the effective reflecting area is 5.9 m2. The reflectivity of the glass is 0.95, and the thermal capacity of the system is about 5 kW thermal. The aperture diameter of the cylindrical-shape receiver which is made of stainless steel is 100 mm, and the height is 210 mm. A quartz window is installed at the receiver aperture to minimize the convective heat loss and prevent air leakages. In order to increase the heat transfer area, porous material (nickel-alloy) is inserted into the receiver. Air flows into the upper part of the receiver, which is the opposite side of the aperture. After the air flows through the inside receiver, that goes out of the receiver through 3 exits which are located near the aperture. The volumetric flow rates of air are varied from 600 to 1200 L/min. The thermal efficiency of the receiver ranges from 82% - 92% depending upon the flow rate. The results show that the system efficiency and receiver efficiency increase as the volume flow rate increases as expected. These results from the experiment will be useful for the applications to air heating receivers and solar reactors.

  • PDF

Performance Prediction of a Laser-guide Star Adaptive Optics System for a 1.6 m Telescope

  • Lee, Jun Ho;Lee, Sang Eun;Kong, Young Jun
    • Current Optics and Photonics
    • /
    • v.2 no.3
    • /
    • pp.269-279
    • /
    • 2018
  • We are currently investigating the feasibility of a 1.6 m telescope with a laser-guide star adaptive optics (AO) system. The telescope, if successfully commissioned, would be the first dedicated adaptive optics observatory in South Korea. The 1.6 m telescope is an f/13.6 Cassegrain telescope with a focal length of 21.7 m. This paper first reviews atmospheric seeing conditions measured over a year in 2014~2015 at the Bohyun Observatory, South Korea, which corresponds to an area from 11.6 to 21.6 cm within 95% probability with regard to the Fried parameter of 880 nm at a telescope pupil plane. We then derive principal seeing conditions such as the Fried parameter and Greenwood frequency for eight astronomical spectral bands (V/R/I/J/H/K/L/M centered at 0.55, 0.64, 0.79, 1.22, 1.65, 2.20, 3.55, and $4.77{\mu}m$). Then we propose an AO system with a laser guide star for the 1.6 m telescope based on the seeing conditions. The proposed AO system consists of a fast tip/tilt secondary mirror, a $17{\times}17$ deformable mirror, a $16{\times}16$ Shack-Hartmann sensor, and a sodium laser guide star (589.2 nm). The high order AO system is close-looped with 2 KHz sampling frequency while the tip/tilt mirror is independently close-looped with 63 Hz sampling frequency. The AO system has three operational concepts: 1) bright target observation with its own wavefront sensing, 2) less bright star observation with wavefront sensing from another bright natural guide star (NGS), and 3) faint target observation with tip/tilt sensing from a bright natural guide star and wavefront sensing from a laser guide star. We name these three concepts 'None', 'NGS only', and 'LGS + NGS', respectively. Following a thorough investigation into the error sources of the AO system, we predict the root mean square (RMS) wavefront error of the system and its corresponding Strehl ratio over nine analysis cases over the worst ($2{\sigma}$) seeing conditions. From the analysis, we expect Strehl ratio >0.3 in most seeing conditions with guide stars.

Geospatial Data Display Technique for Non-Glasses Stereoscopic Monitor (무안경식 입체 모니터를 이용한 지형공간 데이터의 디스플레이 기법)

  • Lee, Seun-Geun;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.6
    • /
    • pp.599-609
    • /
    • 2008
  • Development of computer and electronic technology leads innovative progress in spatial informatics and successful commercialization. Geospatial information technology plays an important role in decision making in various applications. However, information display media are two-dimensional plane that limits visual perception. Understanding human visual processing mechanism to percept stereo vision makes possible to implement three-dimensional stereo image display. This paper proposes on-the-fly stereo image generation methods that are involved with various exterior and camera parameters including exposure station, viewing direction, image size, overlap and focal length. Collinearity equations and parameters related with stereo viewing conditions were solved to generate realisitc stereo imagery. In addition stereo flying simulation scenery was generated with different viewing locations and directions. The stereo viewing is based on the parallax principle of two veiwing locations. This study implemented anaglyphic stereogram, polarization and lenticular stereo display methods. Existing display technology has limitation to provide visual information of three-dimensional and dynamic nature of the real world because the 3D spatial information is projected into 2D plane. Therefore, stereo display methods developed in this study improves geospatial information and applications of GIS by realistic stereo visualization.

A Research for the pattern of the Instrument Panel Design of passenger cars (승용차 인스트루먼트 패널 디자인 유형의 연구)

  • Koo, Sang
    • Archives of design research
    • /
    • v.12 no.4
    • /
    • pp.99-108
    • /
    • 1999
  • The interior space in a passenger car is consisted with many partial elements, and the instrument panel is the most important part from all of them, which is designate the total image of the interior design and the space variation, drivability and safety of the interior space. ] The instrument panel of a passenger car in the early age had the concept of a wall between the engine room and the passenger cabin on which the instrument for the driver were fitted. Therefore the central mounting of the instruments was the typical feature regardless of the position of a driver seat. As the automobiles became more functional with many equipments, driver oriented instrument panel with energy absorbing materials had been developed, and that was the beginning of the various instrument panel design of these days. The recent instrument panels of passenger car have the tendency of going back to the central instrument mounting as it was at the past on a few cars for the strict safety regulation, a new production technology and for the enhanced drivability. It can be summarized into a few results as these with the analysis of a few recent instrument panels. -minimizing the total volume for the better frontal visibility. -energy absorbing and passive structures for the strict impact regulations. -revival of central instrument mounting for the convenience and safety through minimizing the difference of the focal length of a driver.

  • PDF

One dimensional inhomogeneous aperture modulation effects on the MTF of optical system II (일차원적 비균일 개구변조시 광학계의 최적상면 MTF에 미치는 영향)

  • 홍경희
    • Korean Journal of Optics and Photonics
    • /
    • v.9 no.5
    • /
    • pp.277-281
    • /
    • 1998
  • One dimensional inhomogeneous aperture modulation effects on the MTF of optical system was investigated. The lens under test was a doublet made in Korea. It has 10 mm effective diameter, 87.8 mm effective focal length. The ray-fans and spot diagrams were calculated and presented on the picture for on-axis and off-axis (field of view, $1^{\circ}$ and $2^{\circ}$). Aperture modulation was carried out by positioning a aperture modulator close contacter with the lens under test. We bought two modulators from Edmud Company in U.S.A. One was linear type and the other was stepped type. The MTFs were measured on the best of focus for each modulated aperture where the MTF has the highest value for 60 line/mm and were compared with one another. For on-axis, the MTFs of some modulated apertures had higher values than the MTF of unmodulated aperture in the high frequency region. In the case of off-axis, at the field of view $1^{\circ}$, the MTF values of some modulated aperture are improved prominently and some other one are disimproved. At the field of view $2^{\circ}$ most of the MTFs of modulated apertures had lower values than the MTF of unmodulated aperture except the MTFs of linear and inverse linear type aperture in the high frequency area. But the values of MTFs in high frequency region were too low for actual use.

  • PDF

Curvature Linear Equation of a Two-Mirror System with a Finite Object Distance (유한 물체 거리를 갖는 2 반사경계의 곡률 선형 방정식)

  • Lee, Jung-Gee;Rim, Cheon-Seog
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.5
    • /
    • pp.423-427
    • /
    • 2005
  • In this paper, we propose easily tooling method for Seidel third order aberration, which are not well utilized in actual design process due to the complication of mathematical operation and the difficulty of understanding Seidel third order aberration theory, even though most insightful and systematic means in pre-designing for the initial data of optimization. First, using paraxial ray tracing and Seidel third order aberration theory, spherical aberration coefficient is derived for a two-mirror system with a finite object distance. The coefficient, which is expressed as a higher-order nonlinear equation, consists of design parameters(object distance, two curvatures, and inter-mirror distance) and effective focal length(EFL). Then, the expressed analytical equation is solved by using a computer with numerical analysis method. From the obtained numerical solutions satisfying the nearly zero coefficient condition($<10^{-6}$), linear fitting process offers a linear relationship called the curvature linear equation between two mirrors. Consequently, this linear equation has two worthy meanings: the equation gives a possibility to obtain initial design data for optimization easily. And the equation shows linear relationship to a two-mirror system with a finite object distance under the condition of corrected third order spherical aberration.

Comparison of the Accuracy of Stereo Camera Calibration According to the Types of Checkerboards (체커보드의 유형에 따른 스테레오 카메라 캘리브레이션의 정확도 비교)

  • Kim, Eui Myoung;Kwon, Sang Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.6
    • /
    • pp.511-519
    • /
    • 2020
  • For camera calibration, a checkerboard is generally used to determine the principal point, focal length, and lens distortions. The checkerboard has a planar and three-dimensional shape, and camera calibration parameters are affected by the size of the checkerboard, the placement of the target, and the number of target points. In this study, the accuracies of the types of checkerboards were compared using checkpoints for stereo camera calibration, and the purpose of this study was to propose the best performance checkerboard. The checkerboard with large flat shape showed comparatively high accuracy through comparison with the check points. However, due to the size of the checkerboard, it was inconvenient to move and rotate, and there was a disadvantage in that it was difficult to shoot so that the target points could all appear in the stereo camera. The checkerboard, which was manufactured in a small size in a flat shape, was easy to move and rotate but had the lowest three-dimensional accuracy. The checkerboard with targets with height values had the hassle of having to determine the three-dimensional coordinates of the target points by using observation equipment for camera calibration, but it was small in size, convenient to move and rotate, and showed the highest three-dimensional accuracy.

Analysis of Elementary Pre-Service Teacher's Difficulties in Conceptual Understanding and Instructional Planning of Light Refraction (빛의 굴절에 대한 초등예비교사의 개념이해와 지도계획의 어려움 분석)

  • Lee, Jiwon
    • Journal of The Korean Association For Science Education
    • /
    • v.41 no.1
    • /
    • pp.11-18
    • /
    • 2021
  • The purpose of this study is to analyze the questions generated by elementary school pre-service teachers when reading the teacher's guide for the refraction of light, and to analyze the difficulties in understanding the concept and in making instructional plans. A total of 592 meaningful questions were generated by 283 elementary school pre-service teachers after reading the teacher's guide of 'light and lens' unit in the 6th grade of the 2015 revised curriculum. Of these, 306 questions are for understanding the concept of physics and 286 are pedagogical questions. As a result of the analysis, in terms of understanding the concept of physics, the elementary school pre-service teachers encounter difficulties in understanding the concept of the 'cause' of the phenomenon suggested in the textbook, such as the cause of refraction, the reason for scattering light, and the cause of the image change depending on the focal length of the convex lens. In terms of instructional planning, it was followed by questions about how to explain concepts, questions about not being able to explain concepts to elementary school students and having to teach only phenomena, specific explanation methods for specific concepts, and experimental methods. Although the teacher's guide contains various explanations and supplementary materials to help teachers understand the concept, it can be seen that there are many elementary pre-service teachers who cannot answer questions about some concepts even after reading the guide. For concepts with a high frequency of questions, it is necessary to prepare a tutorial that is more understandable. In the instructional plan, there were many questions about teaching methods and experimental methods, so it is necessary to provide more examples and specific experimental methods for explaining concepts in the teacher's guide.