• Title/Summary/Keyword: foam reaction

Search Result 145, Processing Time 0.024 seconds

Effects of Isocyanate Index and Aging on the Physical Properties of Polyurethane Foams (폴리우레탄 발포체의 물성에 대한 이소시아네이트 인덱스와 노화의 영향)

  • Kwon Hyun;Kim Sang-Bum;Kim Youn Cheol
    • Polymer(Korea)
    • /
    • v.29 no.5
    • /
    • pp.457-462
    • /
    • 2005
  • Polyurethane foams (PUFs) were prepared from polymeric 4,4'-diphenylmethane diisocyanate (PMDI), mixed polyol with OH value of 480, silicone surfactant, three catalysts, and hydrofluorocarbon(HFC) as blowing agent. Balance (PC-8), gelling (33LV), and trimerization (TMR-2) catalysts were used. The effect of the catalysts on the physical properties of PUF with increase of isocyanate (NCO) index and aging time was investigated. The cell size of the PUF with PC-8 and 33LV slightly increased with an increase in NCO index from 100 to 170 but compressive strength did not change significantly. In case of trimerization catalyst, the compressive strength of PUF increased from 8.75 to 1$10.5 kg_f/cm^2$ and the cell size decreased with an increase in NCO index. The compressive strength of the PUF with 33LV increased from 9.21 to $10.15 kg_f/cm^2$ with an increase in aging time. However, there was no detectable change in the compressive strength of PUF with TMR-2. A possible interpretation of the results includes an additional cross-link reaction of non-reacted MDI and FTIR spectrum illustrated the change of NCO peak.

Synthesis and Characterization of Interfacial Properties of Glycerol Surfactant (글리세롤계 계면활성제 합성 및 계면 특성에 관한 연구)

  • Lim, JongChoo;Lee, Seul;Kim, ByeongJo;Lee, JongGi;Choi, KyuYong
    • Applied Chemistry for Engineering
    • /
    • v.22 no.4
    • /
    • pp.376-383
    • /
    • 2011
  • The CMCs of LA and LA3 nonionic surfactants obtained from the reaction between glycidol and lauryl alcohol were found to be $0.97{\times}10^{-3}mol/L$ and $1.02{\times}10^{-3}mol/L$ respectively and the surface tensions for 1 wt% surfactant were 26.99 and 27.48 mN/m respectively. Dynamic surface tension measurements using a maximum bubble pressure tensiometer showed that the adsorption rate of surfactant molecules at the interface between the air and the surfactant solution was found to be relatively fast in both surfactant systems, presumably due to the high mobility of surfactant molecules. The contact angles of LA and LA3 nonionic surfactants were 27.8 and $20.9^{\circ}$ respectively and the dynamic interfacial tension measurement by a spinning drop tensiometer showed that interfacial tensions at equilibrium condition in both systems were almost the same. Also both surfactant systems reached equilibrium in 2~3 min. Both surfactant solutions showed high stability when evaluated by conductometric method and the LA nonionic surfactant system provided the higher foam stability than the LA3 nonionic surfactant system. The phase behavior experiments showed a lower phase or oil in water (O/W) microemulsion in equilibrium with an excess oil phase at all temperatures studied. No three-phase region was observed including a middle-phase microemulsion or a lamellar liquid crystalline phase.

Seasonal Concentration of Polycyclic Aromatic Hydrocarbons (PAHs) in Residential Areas Around Petrochemical Complexes and Risk Assessment Using Monte-Carlo Simulation (석유화학단지 주변 주거지역 다환방향족탄화수소(PAHs)의 농도와 Monte-Carlo 모의실험을 통한 위해성평가)

  • Park, Dong-Yun;Choe, Young-Tae;Yang, Wonho;Choi, Kil-Yong;Lee, Chae-Kwan
    • Journal of Environmental Health Sciences
    • /
    • v.47 no.4
    • /
    • pp.366-377
    • /
    • 2021
  • Background: Polycyclic aromatic hydrocarbons (PAHs) are generated in petrochemical complexes, can spread to residential areas and affect the health of residents. Although harmful PAHs are mainly present in particle phase, gas phase PAHs can generate stronger toxic substances through photochemical reaction. Therefore, the risk assessment for PAHs around the petrochemical complex should consider both particle and gas phase concentrations. Objectives: This study aimed to investigate the concentration characteristics of particle and gas phase PAHs by season in residential areas around petrochemical complexes, and to assess the risk of PAHs. Methods: Samples were collected for 7 days by seasons in 2014~2015 using a high volume air sampler. Particle and gas phase PAHs were sampled using quartz filter and polyurethane foam, respectively, analyzed by GC-MS. Chronic toxicity and probabilistic risk assessment were performed on 14 PAHs. For chronic toxicity risk assessment, inhalation unit risk was used. Monte-Carlo simulation was performed for probabilistic risk assessment using the mean and standard deviation of measured PAHs. Results: The concentration of particle total PAHs was highest in autumn. The gas phase concentration was highest in autumn. The average gas phase distribution ratio of low molecular weight PAHs composed of 2~3 benzene rings was 85%. The average of the medium molecular weight composed of 4 benzene rings was 53%, and the average of the high molecular weight composed of 5 or more benzene rings was 9%. In the chronic toxicity risk assessment, 7 of the 14 PAHs exceeded the excess carcinogenic risk of 1.00×10-6. In the Monte-Carlo simulation, Benzo[a]pyrene had the highest probability of exceeding 1.00×10-6, which was 100%. Conclusions: The concentration of PAHs in the residential area around the petrochemical complex exceeded the standard, and the excess carcinogenic risk was evaluated to be high. Therefore, it is necessary to manage the air environment around the petrochemical complex.

Analysis of the Characteristics of Liquidization Behavior of Sand Ground in Korea Using Repeated Triaxial Compression Test (반복삼축압축시험을 이용한 국내 모래지반의 액상화 거동 특성 비교)

  • Seo, Hyeok;Kim, Daehyeon
    • The Journal of Engineering Geology
    • /
    • v.31 no.4
    • /
    • pp.493-506
    • /
    • 2021
  • Liquefaction refers to a phenomenon in which excessive pore water pressure occurs when a dynamic load such as an earthquake rapidly acts on a loose sandy soil saturated with soil, and the ground loses effective stress and becomes liquefied. The indoor repeated test for liquefaction evaluation can be confirmed through the repeated triaxial compression test and the repeated shear test. In this regard, this study tried to confirm the liquefaction resistance strength according to the relative density and particle size distribution of sand using the repeated triaxial compression test. As a result of the experiment, it was confirmed that the liquefaction resistance strength increased as the relative density increased regardless of the soil classification, and the liquefaction resistance strength according to the particle size distribution of the sand was confirmed that the liquefaction resistance strength of the SP sample close to SW was significantly higher. In addition, as a result of analyzing 30% of fine powder compared to 0% of fine powder, as the relative density increased to 40~70%, the liquefaction resistance strength decreased by 5~20%, and the domestic weathered soil ground had a fine liquefaction resistance strength compared to Jumunjin standard sand. When the minute was 10%, it was measured to be 30% or more, and when the fine particle was 30%, it was measured to be less than 50%.

Enzymatic Desugarization of Egg White for Drying with Glucose Oxidase (Glucose Oxidase에 의(依)한 건조용(乾燥用) 난백(卵白)의 효소적(酵素的) 탈당(脫糖))

  • Song, Kwang Taek;Oh, Hong Rock;Kwon, Soon Ki;Lee, Bong Duck
    • Korean Journal of Agricultural Science
    • /
    • v.11 no.2
    • /
    • pp.223-232
    • /
    • 1984
  • The influences of some factors involved in removing glucose from egg white by the glucose oxidase system be fore drying were investigated. And the properties between foams prepared from raw and enzyme-treat ed egg white was compared. The results obtained we re summarized as follows; 1. The dianisidine method was found to be suitable for the measurement of egg white glucose in the range up to 100ug/ml. 2. The optimal pH of glucose oxidase activity on glucose was found to be a bout 5.0, and thats activity was most stable in the pH range of about 4.0~5.0 when that enzyme was treat ed for 30 minute at $50^{\circ}C$. 3. The optimal temperature for glucose oxidase reaction on glucose was found to be about $20^{\circ}C$, and that enzyme activity was s table up to $50^{\circ}C$. 4. The removing rate of glucose from egg white with glucose oxidase was influenced by the enzyme concentration, pH and oxygen addition, and the react ion time of the desugarization was about 10 hour sunder the conditions of 0.5% hydrogen peroxide, pH 7.0 and $26^{\circ}C$. 5. All of the each egg white treated with glucose oxidase, glucose oxidase+pancreatin, glucose oxidase+trypsin showed highly foaming ability than that of natural egg white(control), but thats foam stability, on the contrary, was reversed.

  • PDF