• Title/Summary/Keyword: foF2

Search Result 107, Processing Time 0.023 seconds

On the Variability of the Ionospheric F2-Layer During the Quietest Days in December 2009

  • Kim, Vitaly P.;Hegai, Valery V.
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.4
    • /
    • pp.273-278
    • /
    • 2016
  • December 2009 was one of the quietest (monthly Ap=2) months over the last eight decades. It provided an excellent opportunity to study the day-to-day variability of the F2 layer with the smallest contribution due to geomagnetic activity. With this aim, we analyze hourly values of the F2-layer critical frequency (foF2) recorded at 18 ionosonde stations during the magnetically quietest (Ap=0) days of the month. The foF2 variability is quantified as the relative standard deviation of foF2 about the mean of all the "zero-Ap" days of December 2009. This case study may contribute to a more clear vision of the F2-layer variability caused by sources not linked to geomagnetic activity. In accord with previous studies, we find that there is considerable "zero-Ap" variability of foF2 all over the world. At most locations, foF2 variability is presumably affected by the passage of the solar terminator. The patterns of foF2 variability are different at different stations. Possible causes of the observed diurnal foF2 variability may be related to "meteorological" disturbances transmitted from the lower atmosphere or/and effects of the intrinsic turbulence of the ionosphere-atmosphere system.

Ionospheric peak parameter foF2 and its variation trend observed by GPS

  • Jin, Shuanggen;Park, Jong-Uk;Park, Pil-Ho;Choi, Byung-Kyu
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.181-184
    • /
    • 2006
  • Knowledge of the ionospheric peak parameter foF2 (the critical frequency of F2 layer) is one of key essential factors for predicting ionospheric characteristics and delay correction of satellite positioning. However, the foF2 was almost estimated using an empirical model of International Reference Ionosphere (IRI) or other expensive observing techniques, such as ionosondes and scatter radar. In this paper, the ionospheric peak parameter foF2 is the first observed by ground-based GPS with all weather, low-cost and near real time properties. Compared with the IRI-2001 and independent ionosondes at or near the GPS receiver stations, the foF2 obtained from ground-based GPS is in better agreement, but closer to the ionosonde. However, during nighttime, the IRI model overestimated the GPS observed values during winter and equinox months.Furthermore, seasonal variation trend of the foF2 in 2003 is studied using foF2 monthly median hourly data measured over South Korea. It has shown that the systematic diurnal changes of foF2 are apparent in each season and the higher values of foF2 are observed during the equinoxes (semiannual anomaly) as well as in mid-daytime of each season.

  • PDF

A Study on the Pitch and Formants of Vowels Produced by Monolingual and Bilingual Children (이중언어 환경 아동의 모음 포먼트 특성에 관한 연구)

  • Kwon, Mi-Ji;Ko, Young-Ok;Kim, Hye-Kyung;Lee, Eun-Jeong;Jeong, Ok-Ran
    • Speech Sciences
    • /
    • v.14 no.3
    • /
    • pp.47-57
    • /
    • 2007
  • The aim of this study was to investigate the pitch and formant characteristics of vowels produced by monolingual and bilingual children. We collected sustained phonation of single vowels, /a/, /i/, /u/, from children aged 6 through 10 and compared their acoustic characteristics, fo, F1, F2. Results showed a significant difference between the groups in fo and F1 in the sustained phonation /a/, but not in F2. In the sustained phonation /i/, F2 revealed a significant difference but fo and F1 showed no significant difference. The F2 showed a significant difference in the sustained phonation /u/, but fo and F1 revealed no significant difference between the groups. It is needed to study further on the acoustic characteristics of bilingual children so that we can make a proper language intervention strategy for them.

  • PDF

Seasonal and Latitudinal Variations of the F2-Layer during Magnetic Storms

  • Park, Yoon-Kyung;Kwak, Young-Sil;Ahn, Byung-Ho
    • Journal of Astronomy and Space Sciences
    • /
    • v.30 no.4
    • /
    • pp.231-239
    • /
    • 2013
  • To identify seasonal and latitudinal variations of F2 layer during magnetic storm, we examine the change of daily averages of foF2 observed at Kokubunji and Hobart during high (2000~2002) and low (2006~2008) solar activity intervals. It is found that geomagnetic activity has a different effect on the ionospheric F2-layer electron density variation for different seasons and different latitudes. We, thus, investigate how the change of geomagnetic activity affects the ionospheric F2-layer electron density with season and latitude. For this purpose, two magnetic storms occurred in equinox (31 March 2001) and solstice (20 November 2003) seasons are selected. Then we investigate foF2, which are observed at Kokubunji, Townsville, Brisbane, Canberra and Hobart, Dst index, Ap index, and AE index for the two magnetic storm periods. These observatories have similar geomagnetic longitude, but have different latitude. Furthermore, we investigate the relation between the foF2 and the [O]/[$N_2$] ratio and TEC variations during 19-22 November 2003 magnetic storm period. As a result, we find that the latitudinal variations of [O]/[$N_2$] ratio and TEC are closely related with the latitudinal variation of foF2. Therefore, we conclude that the seasonal and latitudinal variations of foF2 during magnetic storm are caused by the seasonal and latitudinal variations of mean meridional circulation of the thermosphere, particularly upwelling and downwelling of neutral atmosphere during magnetic storm.

Ionospheric F2-Layer Semi-Annual Variation in Middle Latitude by Solar Activity

  • Park, Yoon-Kyung;Kwak, Young-Sil;Ahn, Byung-Ho;Park, Young-Deuk;Cho, Il-Hyun
    • Journal of Astronomy and Space Sciences
    • /
    • v.27 no.4
    • /
    • pp.319-327
    • /
    • 2010
  • We examine the ionospheric F2-layer electron density variation by solar activity in middle latitude by using foF2 observed at the Kokubunji ionosonde station in Japan for the period from 1997 to 2008. The semi-annual variation of foF2 shows obviously in high solar activity (2000-2002) than low solar activity (2006-2008). It seems that variation of geomagnetic activity by solar activity influences on the semi-annual variation of the ionospheric F2-layer electron density. According to the Lomb-Scargle periodogram analysis of foF2 and Ap index, interplanetary magnetic field (IMF) Bs (IMF Bz <0) component, solar wind speed, solar wind number density and flow pressure which influence the geomagnetic activity, we examine how the geomagnetic activity affects the ionospheric F2-layer electron density variation. We find that the semi-annual variation of daily foF2, Ap index and IMF Bs appear clearly during the high solar activity. It suggests that the semi-annual variation of geomagnetic activity, caused by Russell-McPherron effect, contributes greatly to the ionospheric F2-layer semi-annual electron density variation, except dynamical effects in the thermosphere.

High Frequency Dielectric Properties of $CaF_2$ filled Glass-Composites ($CaF_2$가 Filler로 첨가된 유리복합체의 고주파 유전특성)

  • Kim, Sun-Young;Lee, Kyoung-Ho;Kim, Sung-Won
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05c
    • /
    • pp.277-281
    • /
    • 2003
  • Effects of $CaF_2$ addition as a filler on the high frequency dielectric properties and sintering of CaO-$Al_2O_3-SiO_2-B_2O_3$(CASB) and ZnO-MgO-$B_2O_3-SiO_2$(ZMBS) glass composites were investigated. The optimal glass composition in the CASB system was 33.0CaO-$17.0Al_2O_3-35.0SiO_2-15.0B_O_3$(in wt%). The corresponding dielectric properties were k=8.1 and $Q{\times}fo$=1,200GHz. The sintering temperature was $800{\mu}m$. In case of 2MBS system, 25.0ZnO-25.0MgO-20.0$B_2O_3-30.0SiO_2$(in wt%) glass showed k=6.8 and $Q{\times}fo$=5,200GHz when it was sintered at $750^{\circ}C$. The maximum amount of $CaF_2$ in the CASB and 2MBS glass system without any detrimental effect on the sintering was 25.0 v/o and 15.0 v/o, respectively. The addition of $CaF_2$ in the glass systems improved the high frequency dielectric properties. In case of CASB+$CaF_2$ composite, k was 7.1 and $Q{\times}fo$ was 2,300GHz. And in case of 2MBS+$CaF_2$ composite, k was 5.9 and $Q{\times}fo$ was 8,100GHz. $CaF_2$ addition also reduced sintering temperature. Effects of $CaF_2$ on the dielectric and sintering properties was analyzed in terms of viscosity and crystallization behavior changes due to the interaction between $CaF_2$ and the glass systems.

  • PDF

Galaxy identification with the 6D friends-of-friend algorithm for high resolution simulations of galaxy formation

  • Rhee, Jinsu;Elahi, Pascal;Yi, Sukyoung K.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.42.1-42.1
    • /
    • 2021
  • Galaxy/Halo finding based on the friends-of-friend (FoF) algorithm has been widely adopted for its simplicity and expandability to the phase-space. However, cosmological simulations have been progressively bigger in size and more accurate in resolutions, resulting in that galaxy/halo finding gets computationally expensive more and more. In fact, we confirm this issue through our exercise of applying the 6-dimensional (6D) FoF galaxy finder code, VELOCIraptor (Elahi et al.2019) on the NewHorizon simulation (Dubois et al. 2021), in which typical galaxies with about 1e11 Msun (107 particles) are identified with very low speed (longer than a day). We have applied several improvements to the original VELOCIraptor code that solve the low-performance problem of galaxy finding on a simulation with high resolutions. Our modifications find the exact same FoF group and can be readily applied to any tree-based FoF code, achieving a 2700 (12) times speedup in the 3D (6D) FoF search compared to the original execution. We applied the updated version of VELOCIraptor on the entire NewHorizon simulation (834 snapshots) and identified its galaxies and halos. We present several quick comparisons of galaxy properties with those with GALAXYMaker data.

  • PDF

Research on Ionospheric Variations Associated with Solar Activity Covering One Complete Solar Cycle (1991-2002) in Korea

  • Lee, Sang-U;Kim, Jeong-Hun;Kim, Yu-Seon
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.04a
    • /
    • pp.36-36
    • /
    • 2004
  • Ionospheric data from DGS-256 ionosonde operated by Radio Research Laboratory in Anyang archived during 1991-2002 was extracted and analyzed firstly in Korea. Daily, monthly and annual variations of the 12-year F2 layer critical frequency(foF2) are derived to investigate the statistical ionospheric characteristics during one complete solar cycle. Positive correlation between the mean values of 24-hourly monthly median foF2 and the monthly smoothed sunspot number(SSN) for the same period is found. (omitted)

  • PDF

Manual Scaling of Ionograms Measured at Jeju (33.4°N, 126.3°E) Throughout 2012

  • Jeong, Se-Heon;Kim, Yong Ha;Kim, Ki-nam
    • Journal of Astronomy and Space Sciences
    • /
    • v.35 no.3
    • /
    • pp.143-149
    • /
    • 2018
  • The ionosphere has been monitored by ionosondes for over five decades since the 1960s in Korea. An ionosonde typically produces an ionogram that displays radio echoes in the frequency-range plane. The trace of echoes in the plane can be read either manually or automatically to derive useful ionospheric parameters such as foF2 (peak frequency of the F2 layer) and hmF2 (peak height of the F2 layer). Monitoring of the ionosphere should be routinely performed in a given time cadence, and thus, automatic scaling of an ionogram is generally executed to obtain ionospheric parameters. However, an auto-scaling program can generate undesirable results that significantly misrepresent the ionosphere. In order to verify the degree of misrepresentation by an auto-scaling program, we performed manual scaling of all 35,136 ionograms measured at Jeju ($33.43^{\circ}N$, $126.30^{\circ}E$) throughout 2012. We compared our manually scaled parameters (foF2 and hmF2) with auto-scaled parameters that were obtained via the ARTIST5002 program. We classified five cases in terms of the erroneous scaling performed by the program. The results of the comparison indicate that the average differences with respect to foF2 and hmF2 between the two methods approximately correspond to 0.03 MHz and 4.1 km, respectively with corresponding standard deviations of 0.12 MHz and 9.58 km. Overall, 36 % of the auto-scaled results differ from the manually scaled results by the first decimal number. Therefore, future studies should be aware of the quality of auto-scaled parameters obtained via ARTIST5002. Hence, the results of the study recommend the use of manually scaled parameters (if available) for any serious applications.

Response of the Midlatitude F2 Layer to Some Strong Geomagnetic Storms during Solar Minimum as Observed at Four Sites of the Globe

  • Kim, Vitaly P.;Hegai, Valery V.
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.4
    • /
    • pp.297-304
    • /
    • 2015
  • In this study, we documented the midlatitude F2-layer response to five strong geomagnetic storms with minimum Dst < -150 nT that occurred in solar minimum years using hourly values of the F2-layer critical frequency (foF2) from four ionosondes located in different hemispheres. The results were very limited, but they illustrated some peculiarities in the behavior of the F2-layer storm. During equinox, the characteristic ionospheric disturbance patterns over the Japanese station Wakkanai in the Northern Hemisphere and the Australian station Mundaring in the Southern Hemisphere were consistent with the well-known scenario by $Pr{\ddot{o}}lss$ (1993); however, during a December solstice magnetic storm, both stations did not observe any noticeable positive ionospheric disturbances. Over the "near-pole" European ionosonde, clear positive ionospheric storms were not observed during the events, but the "far-from-pole" Southern Hemisphere station Port Stanley showed prominent enhancements in F2-layer peak electron density in all magnetic storms except one. No event produced noticeable nighttime enhancements in foF2 over all four ionosondes.