• Title/Summary/Keyword: fmea

Search Result 307, Processing Time 0.017 seconds

Development and Application of RCM Process for the Optimized Maintenance of Railway Vehicle (철도차량의 유지관리 최적화를 위한 RCM 프로세스 개발 및 적용)

  • Shin, Kun Young;Lee, Hi Sung
    • Journal of Energy Engineering
    • /
    • v.24 no.1
    • /
    • pp.10-16
    • /
    • 2015
  • Recently, RCM(reliability centered maintenance) process is introduced and applied for the planning and implementing efficient and effective maintenance system in terms of optimal rolling stock maintenance. Particularly, cost-time benefits analysis associated with the implementation of RCM for rolling stock maintenance is necessary and required for railway operator in advance. The RCM process was primarily starting from military, airplane and nuclear industries and is now adapted in railway industry for local railway operators. This paper focuses on suggesting the way of connecting the RCM process with railway maintenance activities in the railway operation field. Thus, in order to introduce and establish reliability activities, it needs to review and evaluate the maintenance environment in the organizational point of view. Based on these reviews and evaluations, various maintenance methodologies are reviewed for customizing local railway field situations and establish specific process in the application of major systems on the reliability technology. In this paper, the railway RCM process is proposed for the establishment and construction of the systematic and optimal maintenance system.

Development of a CCTV Based Smart Safety Management System in Thermal Power Plants (석탄발전산업을 위한 지능형 CCTV 기반 스마트안전관리시스템 개발 연구)

  • Song, Ho Jun;Gao, Jianxi;Shin, Wan Seon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.3
    • /
    • pp.50-63
    • /
    • 2021
  • There has been a steady rate of accident in Coal Thermal Power Plants which have relatively higher chance of mortality. However, neither the systematic view of safety management nor the methodology such as safety factors or system requirements are yet to be studied in detail. Therefore, this study aims to propose a methodology to preemptively deal with safety issues and to secure fact focused responsibility in safety. It consists of two main parts. First, the Safety Measurement Index(SMI) with total 50 factors is proposed by analyzing the key factors that contribute to safety accidents based on failure mode and effect analysis (FMEA) and quality function deployment (QFD). To analyze the safety requirements, index presented by major countries and organizations are discussed. Second, main features of intelligent CCTV are studied to determine their relative importance for the framework of Smart Safety Management System (SSMS). Main features are discussed with four technological steps. Also, QFD was held to analyze to analyze how key technologies deal with Quality Measurement Index(QMI). The research results of this study reveal that scientific approaches could be utilized in integrating CCTV technologies into a smart safety management system in the era of Industry 4.0. Moreover, this reasearch provides an specific approach or methodology for dealing with safety management in Coal Thermal Power Plant.

ISO14971:2019 Detailed Analysis and Periodic Safety Update Report Establishment Method for the Single Use Medical Device - Focusing on Medical Device Regulation 2017/745 requirements (일회용 의료기기에 적용을 위한 ISO 14971:2019 분석과 Periodic Safety Update Report 작성 방법 - Medical Device Regulation 2017/745 요구사항 중심으로)

  • Sang Min, Park;Gyu Ha, Ryu
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.1
    • /
    • pp.1-10
    • /
    • 2023
  • With the announcement of MEDICAL DEVICE REGULATION 2017/745 (MDR) on April 5 2017, medical device manufacturers shall apply ISO 14971:2019 (3rd) revised in December 2019. However, there is not much related information and guidance available to medical device manufacturers, especially single use medical device. Risk management process basically follow 5 steps which are Risk Analysis, Risk Evaluation, Risk Control, Evaluation of overall residual risk and post-production activities. The purpose of this study is to provide a guidance of from risk analysis with Failure Mode and Effects Analysis (FMEA) table to overall residual risk evaluation for the single use medical device and to reflect it in a Periodic Safety Update Reports (PSUR) to satisfy with MDR requirements with single use medical device which are widely used and manufactured FDA class 2 or CE class IIb as examples. For this study, single use medical device manufacturer can adopt ISO 14971:2019 in accordance with MDR requirements and it can be extended to the PSUR. But there are still limitations to adopt to the all-single use medical device especially high class, private device and implantable device. So, Competent Authority (CA) shall publish more guidance for the single use medical device.

Development and Performance Improvement of old Aluminum Extruder Remanufacturing Technology (노후된 알루미늄 압출기의 재제조 기술 개발 및 성능 개선)

  • Sang-Min Yoon;Hang-Chul Jung;Man-Seek Kong
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.1
    • /
    • pp.95-103
    • /
    • 2023
  • The domestic remanufacturing industry is concentrated in auto parts, so it is necessary to expand into various industries. In the domestic aluminum industry, the extrusion process accounts for more than 40% of the total, but the old and management of the extrusion equipment is not done properly. In particular, the extruder has a structure in which equipment is not replaced until major parts are damaged or worn, so there are problems such as lower process precision, productivity and production efficiency compared to new equipment, and high maintenance costs. In this study, the old extruder was remanufactured for major high-risk parts through Failure Mode and Effect Analysis(FMEA), and the process level and performance of the extruder were evaluated before and after remanufacturing. Compared to the existing extruder, the standard deviation of the remanufacture extruder was reduced by 93.5%, 57.9%, and 70.0%, respectively, in major process control items such as container temperature, billet temperature, and ram speed, keeping performance constant. In addition, it was possible to produce products with complex shapes that could not be produced before due to problems such as dimensional deviation within tolerances. In this study, remanufacturing guidelines were presented by analyzing the effect of failure modes of the old extruder, and the performance improvement of the extruder was confirmed.

Study of Failure Mode and Effect Analysis in Brachytherapy (근접방사선치료에 관한 사고유형과 영향분석 연구)

  • Lee, Soon Sung;Park, Dong Wook;Shin, Dong Oh;Kim, Dong Wook;Kim, Kum Bae;Oh, Yoon-Jin;Kim, Juhye;Kwon, Na Hye;Kim, Kyeong Min;Choi, Sang Hyoun
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.7
    • /
    • pp.627-635
    • /
    • 2017
  • Brachytherapy is generally performed in conjunction with external radiation therapy, and the treatment course is very complicated, which can lead to radiation accidents. In order to solve this problem, we designed the process map by applying the failure mode and effects analysis (FMEA) method to the Brachytherapy and scored the risk priority number (RPN) for each treatment course based on this process map. The process map consisted of five steps, Patient consulting", "Brachytherapy simulation", "CT simulation", "Brachytherapy treatment planning" and "Treatment". In order to calculate the RPN, doctor, medical physicist, dose planners, therapist, and nurse participated in the study and evaluated occurrence, severity, and lack of detectability at each detail step. Overall, the process map is preceded by a patient identification procedure at each treatment stage, which can be mistaken for another patient, and a different treatment plan may be established to cause a radiation accident. As a result of evaluating the RPN for the detailed steps based on the process map, overall "Patient consulting" and "Brachytherapy treatment planning" step were evaluated as high risk. The nurses showed a tendency to be different from each other, and the nurses had a risk of 55 points or more for all the procedures except "Treatment", and the "Brachytherapy simulation" step was the highest with 88.8 points. Since the treatment stage differs somewhat for each medical institution performing radiotherapy, it is thought that the risk management should be performed intensively by preparing the process map for each institution and calculating the risk RPN.

The Correlations among the Categorized Quality Cost Factors on SMEs (Small & Medium-sized Enterprises) (중소 제조기업의 품질비용 행태에 관한 실증 연구)

  • Lee, Sang-Choon;Koo, Il-Seob
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2011.04a
    • /
    • pp.731-746
    • /
    • 2011
  • The successful and sustainable growth of SMEs depends on their ability of strengthen their competitiveness in quality and cost and service more than anything else as a fundamental of operation. Among these key competitive factors of SMEs, quality is the most critical factor in manufacturing business fields. Because quality strongly influence cost and service performance on this manufacturing business field. There are many different ways to improve the quality performance but it needs proper management decision to choose the best way what can maximize outputs with minimum inputs. And it needs effective measurement methods and some indicators to analysis the quality performance properly. The quality cost is one of the simplest key indicators to measure the quality performance and the effectiveness of quality related management decisions. The major purpose of this study is to diagnose the categorized current level of actual quality cost of local SMEs to maximize their quality management effectiveness through comparing their level with others what's expressed in early studies. In this study, through survey on local SMEs, we found that their average annual quality cost ratio versus turnover - Total amount of annual quality cost divided by annual turnover - is around 3.69% excluded some SME's performances what have different quality control measures with others. And we found some results what corresponded with the early studies on the correlations between those categorized quality costs factors and some discrepancies between some of the literature model and the early case study results as follows. There were negative correlations between the Prevention costs and the External failure costs, and the Appraisal costs and the External failure costs, and there was positive correlation between the Appraisal costs and Internal failure costs same as early studies. But, we couldn't found any strong negative correlations between the Cost of control - Preventive costs & Appraisal costs - and the Cost of Failure of control - Internal & External failure costs -. It reveals not only the lack of effectiveness on their preventive or appraisal activities but also it can reveal there were so many effective ways to prevent the failure costs properly such as some innovative investment on Factory automation includes Error Proofing and more preventive actions to improve the effectiveness of the typical management methods likes CE (Concurrent Engineering), APQP (Advanced Product Quality Planning), FMEA (Failure Mode & Effect Analysis) etc.

  • PDF

A Study for the Development of Fault Diagnosis Technology Based on Condition Monitoring of Marine Engine (선박 엔진의 상태감시 기반 고장진단 기술 개발에 관한 연구)

  • Park, Jae-Cheul;Jang, Hwa-Sup;Jo, Yeon-Hwa
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2019.05a
    • /
    • pp.230-231
    • /
    • 2019
  • This study is a development on condition based maintenance(CBM) technology which is a core item of future autonomous ships. It is developing to design & installation of condition monitoring system and acquisition & processing of data from ongoing ships for fault prediction & prognosis of engine in operation. The ultimate goal of this study is to develop a predicts and decision support software for marine engine faults. To do this, the FMEA and fault tree analysis of the main engine should be accompanied by the analysis of classification of system, identification of the components, the type of faults, and the cause and phenomenon of the failure. Finally, the CBM system solution software could predict and diagnose the failure of main engine through integrated analysis for bid-data of ongoing ships and engineering knowledge. Through this study, it is possible to pro-actively cope with abnormal signals of engine and to manage efficiently, and as a result, expected that marine accident and ship operation loss during navigation will be prevented in advance.

  • PDF