• Title/Summary/Keyword: fly ash strength

Search Result 1,192, Processing Time 0.028 seconds

Evaluating Shrinkage Characteristic of Ternary Grout for PSC Bridge Using Expansive Additive and Shrinkage Reducing Agent (팽창재 및 수축저감제를 이용한 PSC 교량용 3성분계 그라우트의 수축특성 평가)

  • Yuan, Tian-Feng;An, Gi-Hong;Ryu, Gum-Sung;Koh, Kyoung-Taek;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.5
    • /
    • pp.519-525
    • /
    • 2016
  • This paper reports on analyzing the free and restrained shrinkage characteristic of ternary grout used cementitious admixture. In this study, the cementitious admixture was used such as fly ash, ziricania silica fume by combination of expansive additive (a, b) and shrinkage reducing agent. And a number of basic performance tests were conducted to investigate bleeding, volume change, fluidity and compressive strength behavior. According to the results, within appropriate mixing ratio, even the fluidity is not influenced by expansive additive and shrinkage reducing agent, the resistant properties of bleeding, volume change, shrinkage and compressive strength are increased. Comparing with plain grout, the free shrinkage reduced by a minimum of 29% which specimens are added expansive additive and shrinkage reducing agent. The combination of expansive additive a and shrinkage reducing agent is the most effective for reduction of shrinkage. And increasing the mixing ratio of expansive additive and shrinkage reducing agent extended cracking time. Nevertheless, combined addition of expansive additive a 2.0% and shrinkage reducing agent 0.50% has best shrinkage reduction behavior and not appeared cracking. From the above, the mixing ratio of 2.0% of expansive additive a and 0.50% of shrinkage reducing agent is high performance ternary grout for PSC bridge.

Evaluation on Reactivity of By-Product Pozzolanic Materials Using Electrical Conductivity Measurement (전기전도도 시험방법을 활용한 산업부산물 포졸란재료의 반응성 평가)

  • Choi, Ik-Je;Kim, Ji-Hyun;Lee, Soo-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.5
    • /
    • pp.421-428
    • /
    • 2016
  • In this work, pozzolanic activities of various waste materials were compared with those of well-known by-product pozzolanic materials. Undensified and densified silica fume, ASTM class F and class C fly ash, and metakaolin were chosen as well-known pozzolanic materials, and bentonite powder, ceramic powder obtained from wash basin, and waste glass wool, which can possibly possess pozzolanic property, were chosen for comparison. Drop in electrical conductivity at $40^{\circ}C$ saturated lime solution was measured for each materials. The amount of Ca(OH)2 decomposed from cement paste at $450{\sim}500^{\circ}C$ was also measured to evaluate pozzolanic activity. The 28 day compressive strength were used to observe the mechanical property enhanced by incorporation of various waste materials. According to the experimental results, using "difference between maximum conductivity value and conductivity value at 4 hour" was found to be a reasonable approach to determine pozzolanic activity of a material. Pozzolanic activity measured using electrical conductivity correlates very well with that measured using the amount of Ca(OH)2 remained in the cement paste. Relatively good agreement was also found with electrical conductivity and 28 day compressive strength. It was found that electrical conductivity measurement can be used to evaluate pozzolanic activity of unknown materials.

Mechanical and Germination Characteristics of Stabilized Dredged Soil (고화준설토의 역학적 특성과 식생 발아 특성)

  • Lee, Miji;Mun, Kyoungju;Yoon, Gillim;Eum, Hyunmi;Kim, Yuntae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.3
    • /
    • pp.33-40
    • /
    • 2014
  • In this paper, mechanical and germination characteristics of stabilized dredged soils were investigated to recycle dredged soil in eco-friendly manner such as waterfront construction. Non sintering binder (NSB), which was developed by using interchemical reactions between slag, high-calcium fly ash, alkali activator on the dredged marine clay, was added to dredged soil. Ordinary portland cement was also used for the comparison of two binders. Experimental tests such as flow test and unconfined compressive test were carried out to evaluate characteristics of stabilized dredged soil. Leaching test, pH measure, vegetation germination test were also conducted to consider environmental applicability. The unconfined compressive tests shows that unconfined compressive strength (UCS) also increases with the increase of curing time and mixed ratio. UCS of NSB mixtures were higher than those of OPC mixtures. Germination tests showed that germination and sprouting date are better in NSB mixture than OPC mixture. It can be explained that germination decreased as pH and 7-day strength increased.

Durability Characteristics in Concrete with Ternary Blended Concrete and Low Fineness GGBFS (삼성분계 콘크리트와 저분말도 슬래그를 혼입한 콘크리트의 내구 특성)

  • Kim, Tae-Hoon;Jang, Seung-Yup;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.4
    • /
    • pp.287-294
    • /
    • 2019
  • GGBFS(Ground Granulated Blast Furnace Slag) has been widely used in concrete for its excellent resistance chloride and chemical attack, however cracks due to hydration heat and dry shrinkage are reported. In many International Standards, GGBFS with low fineness of 3,000 grade is classified for wide commercialization and crack control. In this paper, the mechanical and durability performance of concrete were investigated through two mix proportions; One (BS) has 50% of w/b(water to binder) ratio and 60% replacement ratio with low-fineness GGBFS, and the other (TS) has 50% of w/b and 60% replacement ratio with 4000 grade and FA (Fly Ash). The strength difference between TS and BS concrete was not great from 3 day to 91 day of age, and BS showed excellent performance for chloride diffusion and carbonation resistance. Two mixtures also indicate a high durability index (more than 90.0) for freezing-thawing since they contain sufficient air content. Through improvement of strength in low fineness GGBFS concrete at early age, mass concrete with low hydration heat and high durability can be manufactured.

Effect of Extracted Tempered Glass from End-of-Life Solar Panels on Mechanical Properties of Mortar (사용수명이 종료된 태양광 패널에서 분리된 강화유리가 모르타르의 역학적 특성에 미치는 영향)

  • So Yeong Choi;Sang Woo Kim;Il Sun Kim;Eun Ik Yang
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.2
    • /
    • pp.77-84
    • /
    • 2023
  • As the installation of solar panel accelerates, so does the number of solar panels reaching their end-of-life (EOL). However, the EOL solar panels is becoming a concern, as they contain potentially hazardous materials and are not easily recycled. Coping strategies such as effective collection, disposal, and recycling methods will be important to manage the growing number of EOL solar panels in the coming years.Therefore, many studies have focused on the development of EOL solar panel recycling technology. One recycling technology for EOL solar panels applicable to the construction field is the application of extracted tempered glass from EOL solar panels as construction materials. This study summarized the EOL solar panel disassembly technology and evaluated the mechanical properties of mortar using extracted tempered glass as fine aggregate. The results showed that when tempered glass was used as a fine aggregate in mortar, the compressive strength, flexural strength, and macro pores in the 1-3 ㎛ with 200-300 ㎛ range were affected, regardless of the disassembly technology of EOL solar panels. Especially, we found that the mechanical performance of mortar using chemically treated tempered glass was noticeably decreased due to changes in the chemical composition of the extracted tempered glass resulting from the removal of K2O and CuO due to chemical reactions. Meanwhile, it was found that when fly ash was used as a binder, the reduction of mechanical performance could be alleviated.

Property of tow Shrinkage High Performance Concrete depending on Mixture Proportions and Material Characteristics (배합 및 재료요인에 따른 저수축 고성능 콘크리트의 품질 특성)

  • Han Cheon-Goo;Kim Sung-Wook;Koh Kyoung-Taek;Han Mu-Cheol
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.6 s.84
    • /
    • pp.805-811
    • /
    • 2004
  • In this paper, effects of mixture proportion and material condition on both fundamental properties, drying and autogenous shrinkage of high performance concrete are discussed. According to the results, for the effect of mixture proportion on the fundamental properties, decrease in W/B and unit water content results in reduction of fluidity, while air content has no variation. Compressive strength exhibits an decreasing tendency with an increase in W/B and unit water content do not remarkable affect the compressive strength. For the effect of materials on the fluidity, the fluidity of low heat portland cement(LPC) is smaller than that of ordinary portland cement(OPC). The use of Polycarbonic acid based superplasticizer(PS) has more favorable effect on enhancing fluidity than Naphtalene based superplasticlzer(NS) and Melamine based superplasticizer(MS). Air content of concrete using LPC is larger than that using OPC. The effects of superplasticizer type on the air content is larger in order of MS, PS and NS. The use of LPC exhibited lower strength development at early age than OPC, whereas after 91days, similar level of compressive strength is achieved regardless of cement type. Compressive strength of concrete is not affected by SP type. For the effect of mixture proportion and materials on drying and autogenous shrinkage, an increase in W/B results in reduction of drying shrinkage and an decrease in water content leads to reduce drying shrinkage. Autogenous shrinkage is not observed until 49 days with the concrete mixture with $35\%$ of W/B and $145 kg/m^3$ of water content. This is due to the combination effects of expansion admixture and shrinkage reducing admixture, which causes an offset of autogenous shrinkage. The use of LPC results in a reduction in autogenous shrinkage compared with OPC. SP type has little influence on the autogenous shrinkage. It is found from the results that mixture proportioning of high performance concrete incorporating fly ash, silica fume, expansion admixture and shrinkage reducing admixture is need to focus on the increase in W/B and the reduction in water content and the use of LPC and MS is also required to use to secure the stability against shrinkage properties.

The Influence of Specimen Volume on the Adiabatic Temperature Rise of Concrete (콘크리트 단열온도 상승량에 미치는 시험체 용적의 영향)

  • Bae, Jun-Young;Cho, Sung-Hyun;Shin, Kyung-Joon;Kim, Yun-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.6
    • /
    • pp.659-666
    • /
    • 2012
  • To secure the thermal crack resistance of mass concrete, researches and the field applications of low heat portland cement (LPC), ternary blended cement (TBC) which is produced by blending ordinary portland cement with blast furnace slag and fly ash, and early strength low heat blended cement (EBC) increased in recent years. Although the model for adiabatic temperature rise is necessary for estimating the risk of thermal cracking of concrete structures, sufficient data have not been accumulated for these mixtures. In addition, the differences in adiabatic test results have been reported for the volume of test specimens. Therefore, the present study evaluated the characteristics of adiabatic temperature rise based on the type of binder and the volume of the adiabatic test specimen. Test results indicated that the maximum temperature rise ($Q_{\infty}$) and the reaction factor (r) of TBC were the lowest. Test results also showed that $Q_{\infty}$ and r changed with respect to the volume of test specimen. $Q_{\infty}$ and r obtained from 6l equipment were lower than those of 50l equipment. Therefore, corrections with respect to this phenomenon was confirmed and the corrections factors are presented.

The Fluidity of High Flowing Concrete According to the Component Ratio of Superplasticizer (고성능감수제 구성비율에 따른 고유동콘크리트의 유동특성)

  • Kim Moo-Han;Kim Yong-Ro;Kim Jae-Hwan;Ho Jang-Jong;Lee Tae-Hee
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.2 s.80
    • /
    • pp.147-154
    • /
    • 2004
  • It is the aim of this study to propose the fundamental data for the establishment of the application and qualify standard of the mixed type superplasticizer after investigating and comparing the fluidity of high flowing concrete according to the component ratio of superplasticizer such as naphthalene sulfonated and melamine sulfonated. The results of this study were shown as the followings; 1) The fluidity and adsorption ratio of cement-paste were improved according to the increasing of naphthalene sulfonated component ratio, and apparent viscosity of cement-paste was improved according to the Increasing of melamine sulfonated component ratio. 2) In case of using the granulated blast-furnace slag, the fluidity of cement-paste was considerably good and the adsorption ratio was decreased and in case of using fly-ash, the apparent viscosity and adsorption ratio of cement-paste were improved. 3) The dispersive capacity performance of concrete can be improved by means of the increasing of naphthalene sulfonated component ratio. Also the viscosity and early strength can be improved by means of the increasing of melamine sulfonated component ratio.

Characterization of Rheology on the Multi-Ingredients Paste Systems Mixed with Mineral Admixtures (광물혼화재가 혼합된 다성분 페이스트 시스템의 레올로지 특성 평가)

  • Park Tae-Hyo;Noh Myung-Hyun;Park Choon-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.2 s.80
    • /
    • pp.241-248
    • /
    • 2004
  • The rheological properties of cement paste system mixed with mineral admixtures (MAs) used to increase the strength and improve durability and fluidity of concrete were investigated. And cement paste systems were designed as one-, two- and three-ingredients blended paste systems. The rheological properties of paste systems were assessed by Rotovisco RT 20 rheometer (Hakke inc.) having a cylindrical serrated spindle. The rheological properties of one-ingredient paste systems were improved with increasing the dosage of superplasticizer. For two-ingredients paste systems, as increasing the replacement ratio of blast furnace slag (BFS) and fly ash (FA), the yield stress and plastic viscosity were decreased compared with non-replacement. In the ordinary portland cement (OPC)-silica fume (SF) paste systems, in accordance with an increase in the replacement ratio of SF, the yield stress and plastic viscosity were increased steeply. For three-ingredients paste systems, both OPC-BFS-SF and OPC-FA-SF paste systems, the rheological properties were improved compared with the only replacement of SF. In the case of both two-and three-ingredients paste systems, the rheological properties using BFS were improved more than FA.

Ultrafine Particle Events in the Ambient Atmosphere in Korea

  • Maskey, Shila;Kim, Jae-Seok;Cho, Hee-Joo;Park, Kihong
    • Asian Journal of Atmospheric Environment
    • /
    • v.6 no.4
    • /
    • pp.288-303
    • /
    • 2012
  • In this study, real time measurements of particle number size distribution in urban Gwangju, coastal Taean, and industrial Yeosu in Korea were conducted in 2008 to understand the occurrence of ultrafine particle (UFP) (<100 nm) events, the variation of its concentration among different sampling sites, and UFP formation pathways. Also, to investigate seasonal and long-term variation of the UFP number concentration, data were collected for the period of 5 years (2007, 2008, 2010, 2011, and 2012) in urban Gwangju. Photochemical and combustion events were found to be responsible for the formation of UFP in the urban Gwangju site, whereas only photochemical event led to the formation of UFP in the coastal Taean site. The highest UFP concentration was found in industrial Yeosu (the average UFP number fractions were 79, 59 and 58% in Yeosu, Gwangju, and Taean, respectively), suggesting that high amount of gas pollutants (e.g., $NO_2$, $SO_2$, and volatile organic carbon (VOC)) emitted from industries and their photochemical reaction contributed for the elevated UFP concentration in the industrial Yeosu site. The UFP fraction also showed a seasonal variation with the peak value in spring (61.5, 54.5, 50.5, and 40.7% in spring, fall, summer, and winter, respectively) at urban Gwangju. Annual average UFP number concentrations in urban Gwangju were $5.53{\times}10^3\;cm^{-3}$, $4.68{\times}10^3\;cm^{-3}$, $5.32{\times}10^3\;cm^{-3}$, $3.99{\times}10^3\;cm^{-3}$, and $2.16{\times}10^3\;cm^{-3}$ in the year 2007, 2008, 2010, 2011, and 2012, respectively. Comparison of the annual average UFP number concentration with urban sites in other countries showed that the UFP concentrations of the Korean sites were lower than those in other urban cities, probably due to lower source strength in the current site. TEM/EDS analysis for the size-selected UFPs showed that the UFPs were classified into various types having different chemical species. Carbonaceous particles were observed in both combustion (soot and organics) and photochemical events (sulfate and organics). In the photochemical event, an internal mixture of organic species and ammonium sulfate/bisulfate was identified. Also, internal mixtures of aged Na-rich and organic species, aged Ca-rich particles, and doughnut shaped K-containing particles with elemental composition of a strong C with minor O, S, and K-likely to be originated from biomass burning nearby agricultural area, were observed. In addition, fly ash particles were also observed in the combustion event, not in the photochemical event.