• Title/Summary/Keyword: flux recovery

Search Result 197, Processing Time 0.027 seconds

Scalants removal from synthetic RO brine using natural zeolite (막증류 공정의 전처리 공정으로서 천연 제올라이트 컬럼 적용)

  • Jeong, Seongpil;Chung, Hayoon;Yoon, Teakgeun;Lee, Seockheon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.3
    • /
    • pp.279-284
    • /
    • 2016
  • Membrane distillation (MD) is the thermally driven water separation process based on the vapor pressure difference across the membrane. In order to increase the water recovery of the conventional RO process, the additional MD-PRO pocess was suggested. In this study, the syntheric RO brine was used as a feed solution of the MD process. Due to the high salinity of the RO brine, the MD membrane could be fouled by the scalants. In order to mitigate the scaling on the MD membrane surface, the pre-treatment process using the column filled by natural zeolite was applied. The roughing filter was installed between the pre-treatment process and MD system in order to prevent possible particulate fouling by the debries of the natural zeolite. Moreover, in order to enhance the CEC of the natural zeolite, the NaCl soaking was conducted. The flux and electronic conductivity were monitored under given experimental conditions. And the membrane morphology and the chemical compositions were analyzed by using the SEM-EDX.

Modeling and Characteristics of Ethanol Fermentation Process Combined with Pervaporation (투과증발과 결합된 에탄올 발효 공정의 모델링 및 특성)

  • 최은수;김진현;유영제
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.4
    • /
    • pp.451-458
    • /
    • 1992
  • Pervaporation which is capable of removing ethanol selectively was adopted to reduce the ethanol inhibition and in situ recovery of ethanol in ethanol fermentation, The composite membrane made of silicone and polysulfone was used to separate the ethanol selectively. The ethanol selectivity of the membrane was about 4 and the total flux was 300 g/m2 h at 301:: and 10 mmHg for 25 g/l of feed concentration. Saccharomyces cerevisiae entrapped within Ca-alginate gels was employed for ethanol fermentations in a fluidized-bed bioreactor. The pervaporation membrane unit and fluidized-bed bioreactor were combined into one system. The proposed model equations for the combined system showed good accordances with the experimental results. It was found from the simulation results that the ethanol concentration in the broth for the combined system was lower than that for the continuous fermentation system without a membrane unit. Ethanol productivity can be thus increased by employing the combined system.

  • PDF

A Study on Membrane Fouling by COD fraction of Influent in Submerged MBR (침지식 MBR을 이용한 유입수의 COD fraction에 따른 막오염 특성 연구)

  • Li, Sang-Jeong;Joo, Jae-Young;Bae, Yoon-Sun;Jung, In-Ho;Lee, Hae-Goon;Jeong, Chang-Hwa;Park, Chul-Hwi
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.5
    • /
    • pp.681-689
    • /
    • 2011
  • Submerged membrane bio-reactor (SMBR) has several advantages such as high MLSS, long SRT, and low F/M ratio at wastewater treatment. So, this has widely applied over the world and many studies have been conducted. However, membrane fouling remains an inevitable problem. This study was investigated using bench-scale SMBR with three poeration modes. Raw waters were prepared by addition of starch, acetic and fibric acid to recovery water of zeolite. The efficiency of nitrification and COD were very stable as about 95% and 80%, respectively. And critical flux was 128.8L/$m^{2}$/hr. The result of biodegradability test was following values at the each mode : Ss+Xs/$C_{T}$=81.7%, 35.1% and 45.3%, $X_{I}+S_{I}/C_{T}=18.3%$, 64.9% and 54.7%. When particulate matters such as $X_{I}$ and $X_{S}$ in influent are increased, membrane fouling will take place more and more. A relative ratio of filtration resistance to the fouling occurred by the cake layer was increased when increased the portion of $X_{I}$ and polysaccharide. It was thought that the formation of cake layer was promoted due to bond between $X_{I}$ and vicid material s generated from the polysaccharide.

Comparison study of the effect of blending method on PVDF/PPTA blend membrane structure and performance

  • Li, Hongbin;Shi, Wenying;Zhang, Yufeng;Zhou, Rong
    • Membrane and Water Treatment
    • /
    • v.6 no.3
    • /
    • pp.205-224
    • /
    • 2015
  • A novel hydrophilic poly (vinylidene fluoride)/poly (p-phenylene terephthalamide) (PVDF/PPTA) blend membrane was prepared by in situ polycondensation of p-phenylene diamine (PPD) and terephthaloyl chloride (TPC) in PVDF solution with subsequent nonsolvent induced phase separation (NIPS) process. For comparison, conventional solution blend membrane was prepared directly by adding PVDF powder into PPTA polycondensation solution. Blend membranes were characterized by means of viscometry, X-ray photoelectron spectroscopy (XPS), Field Emission Scanning Electron Microscopy (FESEM). The effects of different blending methods on membrane performance including water contact angle (WCA), mechanical strength, anti-fouling and anti-compression properties were investigated and compared. Stronger interactions between PVDF and PPTA in in situ blend membranes were verified by viscosity and XPS analysis. The incorporation of PPTA accelerated the demixing rate and caused the formation of a more porous structure in blend membranes. In situ blend membranes exhibited better hydrophilicity and higher tensile strength. The optimal values of WCA and tensile strength were $65^{\circ}$ and 34.1 MPa, which were reduced by 26.1% and increased by 26.3% compared with pure PVDF membrane. Additionally, antifouling properties of in situ blend membranes were greatly improved than pure PVDF membrane with an increasing of flux recovery ratio by 25%. Excellent anti-compression properties were obtained in in situ blend membranes with a stable pore morphology. The correlations among membrane formation mechanism, structure and performance were also discussed.

A Study on the Design Considerations of Vol-Oxidizer for High-Capacity Uranium Dioxide Pellets (대용량 우라늄디옥사이드 펠릿 산화를 위한 공기산화로의 설계 고려사항에 대한 연구)

  • Jung, Jae-Hoo;Lee, Hyo-Jik;Park, Byung-Suk;Yoon, Ji-Sup;Kim, Young-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.4
    • /
    • pp.472-482
    • /
    • 2007
  • This study deals with the design and implementation results for a high-capacity vol-oxidizer that can convert Uranium Dioxide pellets to $U_3O_8$ powder for up to several tens of kg HM/batch. We developed two versions of the $1^{st}$ vol-oxidizer and the $2^{nd}$ vol-oxidizer. Through an experiment with the $1^{st}$ vol-oxidizer, we deduced some problems concerning the design considerations such as the recovery rate of $U_3O_8$, the oxidation time of the Uranium Dioxide pellets, the exothermic reaction, and the powder dispersion. From the analyses of the drawbacks of the $1^{st}$ vol-oxidizer, we devised some novel items such as a folding type mesh, vibrators, and mixing blades. Also, we used the Stokes and Density ratio Eq. to determine the most reasonable flux for preventing a powder dispersion. Compared with the results of the $1^{st}$ vol-oxidizer, we showed that both the permeability of the $U_3O_8$ powders and the oxidation rate of the Uranium Dioxide pellets of the $2^{nd}$ vol-oxidizer were remarkably increased, and the temperature of the reactor was controlled well in spite of an exothermic reaction. Also, the powder was not entirely dispersed through the outlet of the voloxidizer. The experimental results of this work can help in the design of a novel and efficient vol-oxidizer with a higher capacity.

Design Study on a Variable Intake and a Variable Nozzle for Hypersonic Engines

  • Taguchi, Hideyuki;Futamura, Hisao;Shimodaira, Kazuo;Morimoto, Tetsuya;Kojima, Takayuki;Okai, Keiichi
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.713-721
    • /
    • 2004
  • Variable air intake and variable exhaust nozzle of hypersonic engines are designed and tested in this study. Dimensions for variable geometry air intake, ram combustor and variable geometry exhaust nozzle are defined based on the requirements of a pre-cooled turbojet engine. Hypersonic Ramjet Engine is designed as a scaled test bed for each component. Actuation forces of moving parts for variable intake and variable nozzle are reduced by balancing the other force in the opposite direction. A demonstrator engine which includes variable intake and variable nozzle is designed and the components are fabricated. Composite material with silicone carbide is applied for high temperature parts under oxidation environment such as leading edge of the variable intake and combustor liner. Internal cooling structure is adopted for both moving and static parts of the variable nozzle. Pressure recovery and mass capture ratio of the variable intake at Mach 5 is obtained by a hypersonic wind tunnel test. Flow characteristics of the variable nozzle are obtained by a low temperature flow test. Wall temperature and heat flux of the nozzle at Mach 3 is obtained by a firing test. As results, the intake and the nozzle are proved to be used at designed pressure and temperature environment.

  • PDF

Investigation on purification of α-Fe2O3 from zinc smelting iron slag by superconducting HGMS technology

  • Zhang, Peng;Li, Su-qin;Guo, Zi-jie;Zhang, Chang-quan;Yang, Chang-qiao;Han, Shuai-shuai
    • Progress in Superconductivity and Cryogenics
    • /
    • v.20 no.2
    • /
    • pp.16-19
    • /
    • 2018
  • Comprehensive utilization of zinc smelting iron slag not only solves environmental problems but also creates huge economic benefits. This study was conducted on the enrichment and recovery of ${\alpha}-Fe_2O_3$ from zinc smelting iron slag by superconducting HGMS technology. Several variables such as slurry flow velocity, slag concentration, magnetic field intensity and the amount of dispersing agent were tested in magnetic separation. In the experiments, obtained optimal magnetic separation parameters were 1.60 T of magnetic flux intensity, 600 mL/min of slurry flow velocity of, 15 g/L of slag concentration of, 0.10 g/L of dispersing agent. Under this condition, the content of ${\alpha}-Fe_2O_3$ was increased from 86.22% to 94.39% that can approach the Chinese national standard requirements (A level) of iron oxide red. It was concluded that using superconducting HGMS technology was an effective method for the purification of ${\alpha}-Fe_2O_3$ from zinc smelting iron slag.

Net Portal Fluxes of Nitrogen Metabolites in Holstein Steers Fed Diets Containing Different Dietary Ratios of Whole-crop Corn Silage and Alfalfa Hay

  • EL-Sabagh, M.;Imoto, S.;Yukizane, K.;Yokotani, A.;Sugino, T.;Obitsu, T.;Taniguchi, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.3
    • /
    • pp.371-377
    • /
    • 2009
  • The objectives of the present study were to investigate the effects of different dietary ratios of whole-crop corn silage and alfalfa hay on nitrogen (N) digestion, duodenal flow and metabolism across the portal-drained viscera (PDV) of growing beef steers, and to elucidate their relationships. Four steers (236${\pm}$7 kg BW) fitted with duodenal cannulae and chronic indwelling catheters into the portal and mesenteric veins and abdominal aorta were used in a 4${\times}$4 Latin square design. Animals were fed (at 12-h intervals) the 4 diets consisting of whole-crop corn silage (C) and alfalfa hay (A) in 80:20 (C8A2), 60:40 (C6A4), 40:60 (C4A6) and 20:80 (C2A8) ratios of which dietary crude protein (CP) was 10.5, 12.0, 13.5 and 15.0% of dry matter (DM), respectively. Feeding level was restricted to 95% of ad libitum intake to measure N digestion, blood flow and net flux of N across the PDV. Digestibility of DM and neutral detergent fiber and digestible energy intake linearly increased as the ratio of alfalfa hay increased. The N intake, duodenal flow and intestinal disappearance increased linearly with increasing alfalfa hay. Arterial and portal concentrations of ${\alpha}$-amino N showed a quadratic response to increasing levels of alfalfa hay and were the highest in steers fed the C6A4 diet. The net PDV release of ${\alpha}$-amino N and ammonia N increased linearly with increasing alfalfa hay, but urea N uptake by PDV did not differ among diets. As a percentage of apparently digested N in the total gut, net PDV release of ${\alpha}$-amino N linearly decreased from 66 to 48% with increasing alfalfa hay. Conversely, net PDV recovery of ${\alpha}$-amino N to intestinal N disappearance varied with increasing alfalfa hay accounting for 49, 50, 58 and 61% on C8A2, C6A4, C4A6 and C2A8 diets, respectively. Net PDV uptake of urea N, relative to apparently digested N, linearly decreased from 81 to 25% as alfalfa hay increased from 20 to 80% of DM intake. Considering PDV uptake of urea N, microbial efficiency and conversion of total tract digested N to PDV ${\alpha}$-amino N net supply, a diet consisting of 80% whole-crop corn silage and 20% alfalfa hay (10.5% CP) was the best, while considering the quantities of intestinal N disappearance and ${\alpha}$-amino N absorption, a diet of 20% whole-crop corn silage and 80% alfalfa hay (15% CP) would be preferred. The proportion of ${\alpha}$-amino N recovered by PDV relative to the intestinal N disappearance may vary with energy intake level of mixed forage diets.

Fouling Characteristics in Submerged Membrane System of Two-Phase Anaerobic Reactor for Piggery Wastewater Treatment (축산폐수 처리를 위한 막결합형 이상 혐기성 반응조에서 여과막 저항특성)

  • Lee, Sang-Min;Jung, Jin-Young;Chung, Yun-Chul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.3
    • /
    • pp.523-533
    • /
    • 2000
  • A two-phase anaerobic reactor with submerged membrane system was developed for increasing acidogen concentration and methane recovery. The membrane used was mixed esters of cellulose of $0.5{\mu}m$ pore size and $0.8m^2$ of effective surface area. The methanogenic reactor comprised of UASB (Upflow Anaerobic Sludge Blanket) and AF (Anaerobic Filter). COD removal efficiency was 70~80% and the methane content in the biogas increased up to 90% for the submerged membrane system in the anaerobic reactor. As the cake resistance of membrane caused a serious problem, stainless steal prefilters (40, 53, $63{\mu}m$) and air backwashing methods were applied to minimize the cake resistance effectively. Among the tested prefilters. the $63{\mu}m$ prefilter showed the best performance for reduction of cake resistance and a successful long-tern operation. By cleaning with alkali first and acidic solution later. the permeate flux decreased by long term operation was recovered to 89% of that with a new membrane.

  • PDF

Ultrafiltration of Humic and Natural Water: Comparison of Contaminants Removal, Membrane Fouling, and Cleaning (휴믹산 용액 및 자연수의 한외여과: 제거율, 막오염 및 세척특성 비교)

  • Choo, Kwang-Ho;Nam, Mi-Yeon
    • Membrane Journal
    • /
    • v.18 no.1
    • /
    • pp.65-74
    • /
    • 2008
  • NOM and fine particles are the main target materials in water treatment using membranes. Particularly, humic substances extracted from soils are frequently used in many fundamental studies representing natural organic matter in raw water for drinking water treatment. In this study, ultrafiltration (UF) of artificial humic water and natural river water was conducted and the characteristics of removal efficiency and permeability were compared. In the UF of river water, the transmembrane pressure increased in the same pattern with that of 5 mg/L humic water. For the removal of organic matter and fine particles, however, two types of feed water had shown different trends. Kaolin particles and humic acids added to artificial water were better removed, while colloids and organics in natural water were relatively poorly removed. From the $UV_{254}$ and GPC analyses, it seemed that the hydrophobicity and size of humic substances contributed to the greater removal of organic matter. The UF membrane applied for humic water also showed a higher flux recovery by caustic chemical cleaning than that for river water.