• Title/Summary/Keyword: flux optimization

Search Result 262, Processing Time 0.022 seconds

A Study on Possibility of Sedimentation Basin Omission After Installed Membrane System in Drinking Water Treatment (정수처리시설에서 막공정 도입시 침전공정생략 가능성에 관한 연구)

  • Kim, Hyung-Sun;Zhoh, Choon-Koo;Hong, Seong-Ho;Kim, Sung-Jin;Lee, Kil-Sook
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.3
    • /
    • pp.403-410
    • /
    • 2006
  • The objective of this study was to evaluate the possibility of sedimentation basin omission when installed hybrid membrane filtration process in the field plant with the capacity of $500m^3/day$ for 11 months in the "G", water purification plant in Seoul. In order to evaluate the possibility of the sedimentation basin omission, we measured the change of DOC by coagulant dosage. Dosage of PAC(power activated carbon) 4mg/L and coagulant($AI_2O_3$ 10%) 1.67mg/L were compatible to meet the water quality. Also according to the experiment without settlement process, optimization G values were determined to be 300/s, 64/s, and 32/s at the mixing tank, the first flocculator and the second flocculator, respectively. The test was performed under the conditions PAC-coagulation-no settlement-MF. As a result, a dosage of 4.0mg/L as PAC and 0.86 to 1.22mg/L as $Al_2O_3$(10%) in the condition of flux of 62.5LMH were determined to keep TMP value less than $1.0kg_f/cm^2$.

An Optimal Efficiency Control of Reluctance Synchronous Motor using Direct Torque Control (직접 토크 제어를 이용한 릴럭턴스 동기 전동기의 최대 효율제어)

  • 김남훈;김동희;노채균;김민회;백원식
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.3
    • /
    • pp.211-220
    • /
    • 2003
  • This paper presents an implementation of direct torque control (DTC) of Reluctance Synchronous Motor (RSM) with an efficiency optimization. The equipment circuit in Reluctance Synchronous Motor which consider with iron losses is theoretically analyzed and the optimal current ration between torque current and exiting current analytically derived to drive RSM at maximum efficiency. For RSM, torque dynamics can be maintained even with controlling the flux level because a torque is directly proportional to the stator current unlike induction motor. The experimental results are presented to validate the applicability of the proposed method. The developed control system show high efficiency features with 1.0 Kw RSM having 2.57 ratio of d/q reluctance.

A Study on the Optimization of Fuel Injection Nozzle Geometry for Reducing NOx Emission in a Large Diesel Engine (대형 디젤 엔진의 연료 분사 노즐 형상이 NOx 발생량 및 연료소비율에 미치는 영향 연구)

  • Kim Ki-Doo;Ha Ji-Soo;Yoon Wook-Hyeon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.7
    • /
    • pp.1123-1130
    • /
    • 2004
  • Numerical simulations have been carried out to investigate the effect of nozzle hole geometry on the combustion characteristics of the large diesel engine. 6S90MC-C. Spray and combustion phenomena were examined numerically using FIRE code. Wane breakup and Zeldovich models were adopted to describe the atomization characteristics and NOx formation processes. Predictions on the cylinder peak pressure and NOx emission were first verified with the experimental data to confirm the reliability of numerical calculations. The comparison results showed good agreements within the range of 0.64% and 4.6% respectively. Finally, the effects of fuel spray angle and diameter on the engine performance were investigated numerically to find the optimum nozzle hole geometry considering fuel consumption, NOx emission and heat flux of the combustion chamber wall. It was concluded that the combustion gas recirculation in cylinder by changing fuel injection direction is an effective method to reduce NOx emission by about 10% with increasing fuel oil consumption, 1.4% in a large diesel engine.

A Study on the Optimization of Deburring Process for the Micro Channel using EP-MAP Hybrid Process (전해-자기 복합 가공을 이용한 마이크로 채널 디버링공정 최적화)

  • Lee, Sung-Ho;Kwak, Jae-Seob
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.2
    • /
    • pp.298-303
    • /
    • 2013
  • Magnetic abrasive polishing is one of the most promising finishing methods applicable to complex surfaces. Nevertheless this process has a low efficiency when applied to very hardened materials. For this reason, EP-MAP hybrid process was developed. EP-MAP process is expected to machine complex and hardened materials. In this research, deburring process using EP-MAP hybrid process was proposed. EP-MAP deburring process is applied to micro channel, thereby it can obtain both deburring process and polishing process. EP-MAP deburring process on the micro channel was performed. Through design of experiment method, error of height in this process according to process parameter is analyzed. When the level 1 parameter A(magnetic flux density) and level 2 parameter B(electric potential), C(working gap) and level 3 parameter D(feed rate) are applied in the deburring process using EP-MAP hybrid process, it provides optimum result of EP-MAP hybrid deburring process.

The Optimization of Injection Molding System Using Axiomatic Approach (공리적 개념을 적용한 사출성형 시스템의 최적설계)

  • Kim, Jong-Hun;Lee, Jong-Soo;Cha, Sung-Woon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.6
    • /
    • pp.1020-1027
    • /
    • 2003
  • A traditional mold design has been conducted by an experience-based trial and error, whereby the mold designer would decide the gate locations and processing conditions based on the caring characteristics and its functional requirements. The paper suggests an optimal gate location and processing conditions in the injection molding using a global search method referred to as micro genetic algorithm( ${\mu}$ GA). ${\mu}$ GA yields the optimal solution with a small size of population without respect to design variables for saving time that is needed to calculate the fitness of many individuals. Due to the reason, the paper uses a commercial analysis package of injection molding(CAPA) to analysis a state of flux. In addition to that, axiomatic approach .is applied in the beginning of design. It is a useful method to draw a well-organized and reasonable idea to handle a problem.

Thermal System Analysis to Optimize Torch Position in The Core Making Machine. (중자조형기의 토치위치 최적화를 위한 열계해석)

  • Han, Geun-Jo;Ahn, Sung-Chan;Shim, Jae-Joon;Han, Dong-Seop
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.1
    • /
    • pp.43-47
    • /
    • 2002
  • The new core making method economizing the amount of core sand has been requested. The new method is that a core box is heated until it reaches reasonable temperature and then core sand with core binder is sprayed into the core box. Since inner temperature distribution have to be uniform in order to form uniform thickness of core, we studied inner temperature distribution of core box. First, we determined proper number of torches and optimized torch positions to minimize the average of absolute deviation(AVEDEV) of inner temperature. The results are as fellowed: 1. The number of torches that enables uniform inner temperature distribution about $300^{\circ}C$ is 25. 2. When $S_H$ and $S_V$ is 0.7, the torch positions are optimized and AVEDEV is 5.85.

Effect of the Temperature and Pressure on Pressure Retarded Osmosis Performance (온도와 압력 변화가 압력지연삼투 공정 성능에 미치는 영향)

  • Sim, Jin-woo;Nam, Sook-Hyun;Koo, Jae-Wuk;Kim, Eun-Ju;Yoon, Young Han;Hwang, Tae-Mun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.3
    • /
    • pp.321-325
    • /
    • 2016
  • The Pressure Retarded Osmosis (PRO) is the next generation desalination technique and is considered as a eco-friendly energy. This was conducted to evaluate the effect of the temperature and pressure on the PRO performance. The flux of the permeation was measured under different operating conditions and estimated the power density. An improvement of PRO performance is depend on increasing solution temperature and optimum pressure. The effect of increasing feed solution temperature has stronger impact on the PRO performance comparing to the draw solution temperature. The reason of the results was due to the change of osmotic power, viscosity, water permeability and structure parameter(s).

Improvement with Speed Response of Moving Magnet Type LDM (가동자석형 LDM의 속도응답특성 개선)

  • Maeng, In-Jae;Baek, Soo-Hyun;Kim, Yong;Yoon, Shin-Yong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.14 no.5
    • /
    • pp.19-26
    • /
    • 2000
  • In this paper, to improve the mechanical response of the Moving Magnet Type LDM, the design of the LDM was optimized to achieve a large force to volume ratio without reduction the force. The model of the LDM and its optimization procedure were developed on the initial assumption that the magnetic circuit is linear. To analyze the magnetic flux distribution throughout the volume of the LDM and the slider back iron, a 2D finite element analysis of the LDM was performed.

  • PDF

Experimental Determination of Differential Fast Neutron Spectra in a Reactor using Threshold Detectors

  • Kim, Dong-Hoon
    • Nuclear Engineering and Technology
    • /
    • v.4 no.4
    • /
    • pp.280-293
    • /
    • 1972
  • The differential fast neutron spectra above 0.5 Mev at particular spatial positions in tile reactor(TRIGA MARK-II) core has been determined experimentally using several threshold activation detectors. The series expansion technique utilizing the concept of least squares optimization was used to obtain an approximate solution to the set of integral equations which are defined by the experimentally determined activation data. The influence of use of different weighting functions in the solution was analyzed in each measurement. To carry out the necessary mathematical calculations, a computer code for the UNIVAC 1106 digital computer has been prepared. Good agreement was achieved between the differential fast neutron spectra determined in this work and the computed flux determined independently using space-independent multigroup transport theory.

  • PDF

Analysis of an Interior Permanent-Magnet Machines with an Axial Overhang Structure based on Lumped Magnetic Circuit Model

  • Seo, Jangho;Seo, Jung-Moo
    • Journal of Magnetics
    • /
    • v.21 no.1
    • /
    • pp.94-101
    • /
    • 2016
  • This paper shows a new magnetic field analysis of an interior permanent magnet (IPM) machines with an axial overhang structure wherein the rotor axial length exceeds that of the stator. The rotor overhang used to increase torque density of the radial flux machine is difficult to analyze because of extra consideration of axial direction, and thus it is general for machine designer to take 3-D finite element analysis (FEA) capable of considering both radial and axial complicated geometry in the machine. However, it requires too much computing time for preliminary design especially for optimization process. Therefore, in this paper a 2-D analytic method using a lumped magnetic circuit model (LMCM) is proposed to overcome the problem. For the analysis of overhang effect, the magnetic circuit is separated and solved from overhang and non-overhang regions respectively. For the validation of proposed concept, 3-D finite element analysis (FEA) is performed. From the analysis results, it is shown that our new proposed method presents good performance in terms of calculating electromotive force (EMF) and torque within a short time. Therefore, the proposed model can be useful in design of IPM with an overhang structure.