• Title/Summary/Keyword: flux optimization

Search Result 260, Processing Time 0.027 seconds

An optimization design study of producing transuranic nuclides in high flux reactor

  • Wei Xu;Jian Li;Jing Zhao;Ding She;Zhihong Liu;Heng Xie;Lei Shi
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.2723-2733
    • /
    • 2023
  • Transuranic nuclides (such as 238Pu, 252Cf, 249Bk, etc.) have a wide range of application in industry, medicine, agriculture, and other fields. However, due to the complex conversion chain and remarkable fission losses in the process of transuranic nuclides production, the generation amounts are extremely low. High flux reactor with high neutron flux and flexible irradiation channels, is regarded as the promising candidate for producing transuranic nuclides. It is of great significance to increase the conversion ratio of transuranic nuclides, resulting in higher efficiency and better economy. In this paper, we perform an optimization design evaluation of producing transuranic nuclides in high flux reactor, which includes optimization design of irradiation target and influence study of reactor core loading. It is demonstrated that the production rate increases with appropriately determined target material and target structure. The target loading scheme in the irradiation channel also has a significant influence on the production of transuranic nuclides.

Efficiency Optimization Control of Induction Motor using Adaptive Flux Observer (적응 자속 관측기를 이용한 유도전동기의 효율 최적화 제어)

  • 정동화;박기태;이홍균
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.4
    • /
    • pp.88-95
    • /
    • 2001
  • Stator core loss has significant adverse effects when an induction motor is controlled by the conventional vector control method. Therefore, taking core toss into account should make it possible to control the torque very precisely. This paper proposes a speed sensorless vector control method for an induction motor at optimum efficiency and high response taking core loss account. The proposed vector control system consists of a speed adaptive rotor flux observer which takes core loss into account and employs a direct vector control which compensates for the influence of core loss. Also, in this paper, a vector controlled induction motor with a deadbeat rotor flux controller is developed. The method ensures optimum efficiency in the steady state without degradation of the dynamic response. The validity of the proposed technique is confirmed by simulation results for induction motor drive system.

  • PDF

Analysis and Optimization of the Axial Flux Permanent Magnet Synchronous Generator using an Analytical Method

  • Ikram, Junaid;Khan, Nasrullah;Junaid, Qudsia;Khaliq, Salman;Kwon, Byung-il
    • Journal of Magnetics
    • /
    • v.22 no.2
    • /
    • pp.257-265
    • /
    • 2017
  • This paper presents a 2-D analytical method to calculate the back EMF of the axial flux permanent magnet synchronous generator (AFPMSG) with coreless stator and dual rotor having magnets mounted on both sides of rotor yoke. Furthermore, in order to reduce the no load voltage total harmonics distortion (VTHD), the initial model of the coreless AFPMSG is optimized by using a developed analytical method. Optimization using the 2-D analytical method reduces the optimization time to less than a minute. The back EMF obtained by using the 2-D analytical method is verified by a time stepped 3-D finite element analysis (FEA) for both the initial and optimized model. Finally, the VTHD, output torque and torque ripples of both the initial and optimized models are compared with 3D-FEA. The result shows that the optimized model reduces the VTHD and torque ripples as compared to the initial model. Furthermore, the result also shows that output torque increases as the result of the optimization.

Development of a Material Mixing Method for Topology Optimization of PCB Substrate (PCB판의 위상 최적화를 위한 재료혼합법의 개발)

  • Han, Seog-Young;Kim, Min-Sue;Hwang, Joon-Sung;Choi, Sang-Hyuk;Park, Jae-Yong;Lee, Byung-Ju
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.1
    • /
    • pp.47-52
    • /
    • 2007
  • A material mixing method to obtain an optimal topology for a structure in a thermal environment was suggested. This method is based on Evolutionary Structural Optimization(ESO). The proposed material mixing method extends the ESO method to a mixing several materials for a structure in the multicriteria optimization of thermal flux and thermal stress. To do this, the multiobjective optimization technique was implemented. The overall efficiency of material usage was measured in terms of the combination of thermal stress levels and heat flux densities by using a combination strategy with weighting factors. Also, a smoothing scheme was implemented to suppress the checkerboard pattern in the procedure of topology optimization. It is concluded that ESO method with a smoothing scheme is effectively applied to topology optimization. Optimal topologies having multiple thermal criteria for a printed circuit board(PCB) substrate were presented to illustrate validity of the suggested material mixing method. It was found that the suggested method works very well for the multicriteria topology optimization.

A New Switched Flux Machine Employing Alternate Circumferential and Radial Flux (AlCiRaF) Permanent Magnet for Light Weight EV

  • Jenal, Mahyuzie;Sulaiman, Erwan;Kumar, Rajesh
    • Journal of Magnetics
    • /
    • v.21 no.4
    • /
    • pp.537-543
    • /
    • 2016
  • Currently, an interest in electric vehicles (EVs) exhibited by automakers, government agencies and customers make it as more attractive research. This is due to carbon dioxide emitted by conventional combustion engine that worsens the greenhouse effect nowadays. Since electric motors are the core of EVs, it is a pressing need for researchers to develop advanced electric motors. As one of the candidates, switched flux machine (SFM) is initiated in order to cope with the requirement. This paper proposes a new alternate circumferential and radial flux (AlCiRaF) of permanent magnet switched flux machines (PMSFM) for light weight electric vehicles. Firstly, AlCiRaF PMSFM is compared with the conventional PMSFM based on some design restrictions and specifications. Then the design refinements techniques are conducted by using deterministic optimization method in order to improve preliminary performance of machine. Finally the optimized machine design has achieved maximum torque and power of 47.43 Nm and 12.85 kW, respectively, slightly better than that of conventional PMSFM.

Efficiency Optimization Control of Induction Motor System using Fuzzy Control (퍼지제어를 이용한 유도전동기 시스템의 효율 최적화 제어)

  • Chung, Dong-Hwa;Park, Gi-Tae;Lee, Hong-Gyun
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.7
    • /
    • pp.318-324
    • /
    • 2001
  • Efficiency optimization of an indirect vector controlled induction motor drive is proposed. The loss models are used in the validation of the fuzzy logic based on-line efficiency optimization control. At steady state, the fuzzy controller adaptively changes the excitation current on the basis of measured input power, until the maximum efficiency point is reached. The pulsating torque, due to flux reduction, has been compensated by an ingenious feedforward scheme. During transient state, rated flux is established to get the best transient response. Through a comprehensive simulation study, the results confirmed the validity of the proposed method.

  • PDF

Analytical Calculation for Predicting the Air Gap Flux Density in Surface-Mounted Permanent Magnet Synchronous Machine

  • Feng, Yan-li;Zhang, Cheng-ning
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.769-777
    • /
    • 2017
  • The research of air gap flux density has a significant effect on predicting and optimizing the structure parameters of electrical machines. In the paper, the air gap coefficient, leakage flux factor and saturation coefficient are first analytically expressed in terms of motor properties and structure parameters. Subsequently, the analytical model of average air gap flux density for surface-mounted permanent magnet synchronous machines is proposed with considering slotting effect and saturation. In order to verify the accuracy of the proposed analytical model, the experiment and finite element analysis (FEA) are used. It shows that the analytical results keep consistency well with the experimental result and FEA results, and the errors between FEA results and analytical results are less than 5% for SPM with high power. Finally, the analytical model is applied to optimizing the motor structure parameters. The optimal results indicate that the analytical calculation model provides a great potential to the machine design and optimization.

Efficiency Optimization with Sliding Mode Observer for Induction Motor (슬라이딩 모드 관측기를 이용한 유도전동기의 효율 최적화)

  • Lee, Sun-Young;Park, Ki-Kwang;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 2009.04a
    • /
    • pp.74-76
    • /
    • 2009
  • In this paper, search method and sliding mode observer are developed for efficiency optimization of induction motor. The proposed control scheme consists of efficiency controller and adaptive backstepping controller. A search controller for which information of input of fuzzy controller is included in efficiency controller that uses a direct vector controlled induction motor. The search controller is based on the "Rosenbrock" method and finds the flux level at the minimum input power of induction motor. Once this optimal flux level has been determined, this information is utilized to update the rule base of a fuzzy controller A sliding mode observer is designed to estimate rotor flux and an adaptive backstepping controller is also used to compensate for mechanical uncertainties in the speed control of induction motor. Simulation results are presented to validate the proposed controller.

  • PDF

Optimal Geometric Design of Transverse Flux Linear Motor Using Response Surface Methodology (반응표면분석법을 이용한 횡자속 선형전동기의 형상최적설계)

  • Hong, Do-Kwan;Woo, Byung-Chul;Kang, Do-Hyun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.10
    • /
    • pp.498-504
    • /
    • 2006
  • Thrust force of linear motor is one of the important factor to specify motor performance. In this study, we optimized maximizing the thrust force of TFLM(Transverse Flux Linear Motor) using Response Surface Methodology by the table of orthogonal way. The Response Surface Methodology was well adapted to make the analytical model of the maximum thrust force and enable the objective function to be easily created and a great deal of the time In computation to be saved. Therefore, it is expected that the proposed optimization procedure using the Response Surface Methodology can be easily utilized to solve the optimization problem of electric machine.