• Title/Summary/Keyword: flux noise

Search Result 261, Processing Time 0.024 seconds

Control of a Three-pole Hybrid Active Magnetic Bearing using Redundant Coordinates (잉여좌표계를 이용한 3-폴 하이브리드형 자기베어링 제어)

  • Park, Sang-Hyun;Lee, Chong-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1375-1381
    • /
    • 2007
  • In this paper, we propose a linear modeling and identical PD controller design scheme for the three-pole hybrid-type AMB recently developed in the laboratory, which consists of three permanent magnets, providing bias flux, three Hall diodes, measuring rotor displacements, and ring type permanent magnet bearing, stabilizing in axial and tilting directions. Along the three physical coordinates formed by three poles, we introduce the redundant coordinate system and three identical decoupled controllers to construct linear model. The experiments are also carried out in order to verify the effectiveness of proposed controller in stabilizing the transient and steady state response of rotor.

  • PDF

Performance Evaluation of Multi-sensors Signals and Classifiers for Faults Diagnosis of Induction Motor

  • Niu, Gang;Son, Jong-Duk;Yang, Bo-Suk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.411-416
    • /
    • 2006
  • Fault detection and diagnosis is the most important technology in condition-based maintenance(CBM) system that usually begins from collecting signatures of running machines using multiple sensors for subsequent accurate analysis. With the quick development in industry, there is an increasing requirement of selecting special sensors that are cheap, robust, and easy-installation. This paper experimentally investigated performances of four types of sensors used in induction motors faults diagnosis, which are vibration, current, voltage and flux. In addition, diagnostic effects of five popular classifiers also were evaluated. First, the raw signals from the four types of sensors are collected at the same time. Then the features are calculated from collected signals. Next, these features are classified through five classifiers using artificial intelligence techniques. Finally, conclusions are given based on the experiment results.

  • PDF

High Sensitivity 3-axis Actuator for Slim Optical Disc Drive (슬림광디스크드라이브를 위한 고감도 3축구동 액추에어터)

  • Cheong, Young-Min;Lee, Jin-Won;Kim, Kwang
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.1000-1003
    • /
    • 2002
  • For high density optical storage, there should be a high NA objective lens and a shorter wavelength laser diode. To secure the disc tilt margin related to the coma aberration, moreover, it's difficult to apply the tilt compensation mechanism into the portable PC. In this paper, we proposed the 3-axis asymmetry pickup actuator with high efficiency symmetric magnetic circuit, which consisted of the top cover type inner yoke for high magnetic flux density, the coil stack unit for the 3-axis independent operation and vertically polarized magnets. This newly suggested actuator features DVD-RAM recording, we achieved the high focus & track AC sensitivity and the greatly stabilized system.

  • PDF

Design of a Step Motor with a Passive Magnetic Bearing (수동형 마그네틱 베어링이 결합된 스텝 모터의 설계)

  • Kwak, Ho-Seong;Choi, Dong-Hoon;Kim, Seung-Jong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.12 s.117
    • /
    • pp.1201-1207
    • /
    • 2006
  • This paper introduces a step motor with a passively levitated rotor which comprises a homopolar step motor and a passive magnetic bearing. Compared with conventional self-bearing motors which are mostly based on the active magnetic bearing technology, the proposed motor has a very simple structure and operating principle. For the levitation, it works just like passive magnetic bearings which use the repulsive force between permanent magnets. Halbach array is used to increase the bearing stiffness. On the other hand, its rotation principle is just the same with that of conventional motors. In this paper, we introduce the design scheme to avoid the flux interference possibly produced by electromagnets and permanent magnets, and show some results of FEM analysis to predict the performance of the proposed motor.

A study on Modeling and Experiments of an Eddy Current Damping (와전류감쇠의 모델링 및 특성 실험에 관한 연구)

  • Park, Jung-Sam;Kwag, Dong-Gi;Bae, Jae-Sung;Hwang, Jai-Hyuk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.250-254
    • /
    • 2008
  • Eddy currents are induced when a nonmagnetic conductive material is moving subjected to the magnetic field due to a permanent magnet. These currents circulates in the conductive material and are dissipated, causing a repulsive force between the magnet and the conductor. Using this concept, the eddy current damping can be used as a viscous damping. The present study investigates the characteristics of a magnetic damping analytically and experimentally. The theoretical model of a eddy current damping is developed from electromagnetics and is verified from experiments. The drop test of a magnet in the cooper tube shows that the present model can accurately predict the damping force. Additionally, the dynamic test of a eddy current damping is carried to verify the present model.

  • PDF

Analysis of Outer Rotor Type BLDC motor vibration characteristics according to slot combination (Outer Rotor Type BLDC 모터의 슬롯 수에 따른 진동 특성 분석)

  • Bang, Ki-Chang;Kim, Kwang-Seok;Kwon, Joong-Hak;Ree, Yeong-Uk;Hwang, Sang-Moon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.196-201
    • /
    • 2008
  • This paper is about electromagnetic vibration source in outer rotor type of BLDC motors. Experiments are carried out with three pole-slot combinations which are 6 slots, 12 slots, and 24 slots with 4 poles rotor. According to results, vibration sources separate into electromagnetic and mechanical factors. Using the finite element method (FEM), It is analyed that vibration characteristics of electromagnetic source in each type. This paper shows electromagnetic sensitivity to vibration, and introduces necessary point in lower vibration motors. Also rotor balance is important to prevent uneven distribution of magnetic flux between rotor and stator.

  • PDF

Development of Linear Magnetic Actuator for Active Vibration Control (능동진동제어를 위한 선형 자기 액츄에이터 개발)

  • Lee, Haeng-Woo;Kwak, Moon-K.;Kim, Ki-Young;Lee, Han-Dong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.587-592
    • /
    • 2009
  • This paper is concerned with the development of linear magnetic actuator for active vibration control. The newly developed linear magnetic actuator consists of permanent magnets and copper coils. On the contrary to the voice-coil type actuator, the linear magnetic actuator utilizes magnetic flux to generate the shaft movement. In this study, experiments on the prototype linear magnetic actuator were carried out to investigate its dynamic characteristics. Block and inertia forces generated by the actuator were measured. The experimental results show that the actuator can be used as both actuator and active tuned-mass damper. The linear magnetic actuator was attached to a cantilever as the active-tuned mass damper and active vibration control experiment was carried out. The experimental results show that the newly developed linear magnetic actuator can be effectively used for the active vibration control of structures.

  • PDF

Design of A Simple Disk-type 3-DOF Actuator (단순 원판형 평면 3자유도 액추에이터 설계)

  • Bach, Du-Jin;Kim, Ha-Yong;Kim, Seung-Jong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.3 s.96
    • /
    • pp.334-340
    • /
    • 2005
  • A disk-type 3-DOF actuator which has new principle and very simple structure is proposed. Also it utilizes the relation of bias and control fluxes produced by permanent magnets and coils, respectively, like other conventional electromagnetic actuators, but its main feature is that both the coils and permanent magnets are fixed in the stator, which makes it easy to design the shape of moving part. Operating principle is that a moving disk is driven by reaction force of Lorentz force acting on the fixed equivalent coil. Simple analytic approach and FEM analysis are performed to determine the design parameters so as to increase the driving force and distance. And some experimental results show the feasibility of the proposed actuator.

Thermal Stability Analysis of Flexible Beam Spacecraft Appendage (위성체 유연 보 구조물의 열 안정성 해석)

  • 윤일성;송오섭
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.399-406
    • /
    • 2001
  • Thermally induced vibration response of composite thin walled beams is investigated. The thin-walled beam model incorporates a number of nonclassical effects of transverse shear, primary and secondary warping, rotary inertia and anisotropy of constituent materials. Thermally induced vibration response characteristics of a composite thin walled beam exhibiting the circumferentially uniform system(CUS) configuration are exploited in connection with the structural bending-torsion coupling resulting from directional properties of fiber reinforced composite materials and from ply stacking sequence. A coupled thermal structure analysis that includes the effects of structural deformations on heating and temperature gradient is investigated.

  • PDF

Identification of Runout. Unbalance and Eddy Current Effect in Active Magnetic Bearing System Using LMS Algorithm (LMS 알고리즘을 이용한 전자기 베어링계에서의 런아웃, 불균형력 및 와전류 효과 규명)

  • 김하용;김승종;이종원
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.172-177
    • /
    • 2001
  • This paper proposes an adaptive feedforward controller (AFC) based on LMS for periodic disturbance rejection in active magnetic bearing system. The proposed controller does not alter the stability and robustness of the existing AMB system. It is shown that the control delay due to the eddy current as well as runout and unbalance can be identified and compensated using the estimated displacement from the measured magnetic flux. The simulation results confirm that the proposed scheme successfully identifies and compensates for the runout, unbalance and eddy current effect, leading to a high-precision magnetic bearing system.

  • PDF